Patents Examined by Rodney T. Frank
  • Patent number: 11906340
    Abstract: A separation assembly for the flow measurement of a gas flow and a liquid flow of a multiphase fluid includes separator with a housing and a separation element inside the housing. The separation element provides the fluid to rotate at high-speed causing strong centrifugal forces on the multiphase fluid. The housing has an inlet for a multiphase mixture and two outlets, one primarily for pre-separated gas and the second primarily for pre-separated liquid. These outlets lead to a regulator. The regulator is part of the separation assembly and includes at least two outlets, one for gas and one for liquid. The regulator ensures the proportional regulation and the final separation of gas and liquid phases over an entire flow rate to provide monophase liquid and gas at the outlets of the regulator.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: February 20, 2024
    Assignee: L'ATELIER DE MATOURNE S.A.S.
    Inventors: Ton Leenhoven, Goncalo Gil Vieira Amaro
  • Patent number: 11906339
    Abstract: The invention relates to a Coriolis measuring transducer of a Coriolis measuring device comprising: at least one measuring tube; at least one exciter; at least two sensors; wherein at least one exciter or at least one sensor has a coil device and a magnet device, wherein the magnet device has a holder and at least a first magnet group and at least a second magnet group, wherein the holder has a body with a body length axis and a first end and a second end wherein the first end has an end surface, wherein the body has three recesses, wherein a central recess is separated, in each case, from an outer recess by, in each case, an intermediate wall, wherein each intermediate wall has an opening, and wherein the first magnet group is arranged in a first opening, and wherein the second magnet group is arranged in a second opening.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: February 20, 2024
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Benjamin Schwenter, Marc Werner, Claude Hollinger, Gebhard Gschwend
  • Patent number: 11899476
    Abstract: A gas flow measuring method is provided. A first pressure of a gas in a first and a second flow path is measured. A gas is supplied to the first and the second flow paths by repeating gas supply and stop of the gas supply, and a gas supply time is measured. A second pressure and a temperature of the gas in the first and the second flow path is measured, a third pressure of the gas in the second flow path is measured after the gas is exhausted from the second flow path, and a fourth pressure of the gas in the first and the second flow path is measured. The gas flow supplied to the first and the second flow path is calculated based on the first to fourth pressures and the temperature, and corrected based on a theoretical gas supply time and a calculated average time.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: February 13, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Risako Matsuda, Shinichiro Hayasaka, Manabu Oie, Keita Shouji
  • Patent number: 11885186
    Abstract: A drilling fluid inhibition evaluation device includes a main test member, a temperature control pressurization system, a gas source, a circulation heating system, a confining pressure pump, a central control system, a computer, an ultrasonic detector and a safety valve electrically connected through pipelines, respectively, the main test member and the temperature control pressurization system sequentially connected with the gas source; the present disclosure can pre-pressurize experimental fluid and then inject the fluid into a dilatometer, so as to prevent the fluid from generating obvious changes of phase states, eliminate pressure setting errors caused by a saturated vapor pressure of the fluid, improve accuracy of evaluation results, inspect a real expansion state of the sample and simultaneously monitor structural change characteristics of a rock sample in real time through reflection conditions of sound waves.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: January 30, 2024
    Assignees: Southwest Petroleum University, CHENGDU KANGPUSHEN PETROLEUM TECHNOLOGY DEVELOPMENT CO., LTD
    Inventors: Xiangchen Li, Yousheng Chen, Fan Zhang
  • Patent number: 11879875
    Abstract: A liquid chromatography sample manager includes a sampling mechanism; a sample platter mounted in the sampling mechanism, the sample platter configured to rotate about a first vertical axis; a needle arm mounted within the sampling mechanism, the needle arm configured to rotate about a second vertical axis; and a sample delivery system in fluidic communication with solvent delivery system, the sample delivery system including a sample needle attached to the needle arm, the sample delivery system configured to transfer a first sample from a first sample vial carrier located in the sample platter into a chromatographic flow stream.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: January 23, 2024
    Assignee: WATERS TECHNOLOGIES CORPORATION
    Inventors: Joshua A. Burnett, Rose Solow, David A. Simpson, Marc E. Lemelin
  • Patent number: 11874267
    Abstract: A system for testing properties of a sample, the system including a test cell. The test cell includes a cell casing having a first end piece, a second end piece, and at least one wall extending between the first end piece and the second end piece. The cell casing defines a pressure boundary enclosing an interior region of the cell. The test cell further includes a sample chamber, a first reservoir, and a second reservoir disposed within the pressure boundary. The sample chamber defines an interior region. The first reservoir fluidly connects to the interior region of the sample chamber. The second reservoir fluidly connects to the interior region of the sample chamber. The test cell also has a piston assembly having a piston fluid chamber and a piston with a stem extending into the piston fluid chamber. The piston partially defines the sample chamber.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: January 16, 2024
    Assignee: Saudi Arabian Oil Company
    Inventor: Mustafa Hakimuddin
  • Patent number: 11866916
    Abstract: A fluid supply monitoring system includes a fluid sensor configured to identify a flow rate of a fluid through a supply line. The system comprises a valve configured to control the flow rate through the supply line and a pressure sensor configured to detect a fluid pressure. A controller is configured to receive the flow rate data and identify fluid consumption from the supply line based on the flow rate. The controller is further configured to compare the fluid consumption of a usage event to one of a time limit and a volume limit. In response to the fluid consumption exceeding the time limit or the volume limit, the controller controls the valve to a closed position and identifies a potential fluid leak. With the valve in the closed position, the controller processes a verification procedure that identifies whether the potential fluid leak is an actual fluid leak.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: January 9, 2024
    Assignee: NIBCO INC.
    Inventor: Christopher William Mason
  • Patent number: 11857977
    Abstract: A fixing clamp for a microfluidic chip includes a set of sub-clamps arranged to be spaced apart on left and right. Each of the sub-clamps includes an upper plate body with a first passage, the first passage having a first outer interface and a first chip docking port, and the first chip docking port being located on a lower surface of the upper plate body and at one end of the upper plate body facing the other sub-clamp; a lower plate body with a second passage, the second passage having a second outer interface and a second chip docking port, and the second chip docking port being located on an upper surface of the lower plate body and at one end of the lower plate body facing the other sub-clamp; and a spacing adjusting mechanism connecting the upper plate body and the lower plate body together.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: January 2, 2024
    Assignee: Tsinghua University
    Inventors: Moran Wang, Wenhai Lei
  • Patent number: 11860140
    Abstract: A method and system for injecting an unconcentrated sample into a receiving LC/MS/MS system that is configured to determine a concentration of one or more PFAS analytes within the unconcentrated sample, wherein the LC/MS/MS includes ESI. The unconcentrated sample may be subjected to one or more of the following ESI conditions: i) a probe gas temperature of approximately 120° C. to approximately 180° C.; ii) a sheath gas heater setting of approximately 250° C. to approximately 400° C.; and/or iii) a sheath gas flow of approximately 8 L/min to approximately 12 L/min. The unconcentrated sample's concentration and/or an injected amount of the one or more PFAS analytes is determined.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: January 2, 2024
    Assignee: SUFFOLK COUNTY WATER AUTHORITY
    Inventor: Amanda Comando
  • Patent number: 11835375
    Abstract: Disclosed is a measuring sensor of a measuring device for detecting a mass flow rate. The measuring sensor comprises a measuring tube, a vibration exciter, and at least two vibration sensors. The vibration exciter and the vibration sensors each have a coil apparatus having at least one coil and at least one magnetic apparatus. The coil apparatus comprises a printed circuit board having at least one printed circuit board layer, wherein the coil is formed by means of an electrically conductive conductor track, wherein the coil is arranged on the first side and/or second side of a printed circuit board layer, wherein the printed circuit board comprises at least two contact-making elements for connecting the coil to an electronic measuring and/or operating circuit of the measuring device by means of connection elements, and is characterized in that at least one contact-making element has a hole.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: December 5, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Benjamin Schwenter, Martin Stucki, Claude Hollinger, Marc Werner
  • Patent number: 11821776
    Abstract: A mass flow sensor assembly for a mass flow controller or a mass flow meter comprises a mass flow sensor comprising a capillary tube held by a first corner support and a second corner support formed separately from each other. The capillary tube comprises a sensor portion which is located between the two corner supports, and wherein the two corner supports each have an arc-shaped groove in which the capillary tube is partially received. In addition, a method of manufacturing a mass flow sensor assembly is described.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 21, 2023
    Inventors: Andreas Doerr, Tanja Hertweck, Jan Magnussen, Juergen Wiedemann, Armin Arnold, Frederic Heinrich
  • Patent number: 11821879
    Abstract: An autosampler for a chromatograph includes a first injection port through which a sample is injected into a first analysis flow path of the chromatograph, a second injection port through which a sample is injected into a second analysis flow path of the chromatograph, a needle that is movable to both of the first injection port and the second injection port, and injects a sample into the first injection port and the second injection port, a first sample loop that stores a sample to be injected into the first analysis flow path, a second sample loop that stores a sample to be injected into the second analysis flow path, and a metering pump that loads a sample in the first sample loop and the second sample loop.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: November 21, 2023
    Assignee: SHIMADZU CORPORATION
    Inventor: Takaaki Fujita
  • Patent number: 11815354
    Abstract: In a first aspect, the angular rate sensor comprises a substrate and a rotating structure anchored to the substrate. The angular rate sensor also includes a drive mass anchored to the substrate and an element coupling the drive mass and the rotating structure. The angular rate sensor further includes an actuator for driving the drive mass into oscillation along a first axis in plane to the substrate and for driving the rotating structure into rotational oscillation around a second axis normal to the substrate; a first transducer to sense the motion of the rotating structure in response to a Coriolis force in a sense mode; and a second transducer to sense the motion of the sensor during a drive mode. In a second aspect the angular rate sensor comprises a substrate and two shear masses which are parallel to the substrate and anchored to the substrate via flexible elements. In further embodiments, a dynamically balanced 3-axis gyroscope architecture is provided.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: November 14, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Doruk Senkal, Robert Hennessy, Houri Johari-Galle, Joseph Seeger
  • Patent number: 11815521
    Abstract: Certain embodiments described herein are directed to devices and system that can be used to fill a sample cell. In some examples, the system can be configured with a pressure device configured to provide a negative pressure to accelerate filling of the cell with the sample. In some embodiments, the negative pressure can be used to fill a flow cell at a selected fill rate.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: November 14, 2023
    Assignees: PerkinElmer Health Sciences, Inc., PerkinElmer Singapore PTE Ltd.
    Inventors: Nigel Thornton Hopley White, Steven Edward Liebold, Gary Vincent Millard
  • Patent number: 11808672
    Abstract: The invention provides a detection device, comprising a fluid sample collecting chamber, the collecting chamber including an opening, a testing element is arranged in the collecting chamber, and the testing element is used to test the presence of the analyzed substance in the fluid sample; the detection device further comprises a cover body used to close the opening of the collecting chamber; wherein the cover body includes an elastic card used to engage the opening of the collecting chamber, when the cover body closes the opening of the collecting chamber, the elastic card engages the outer wall of the opening of the collecting chamber, thereby fixing the cover body on the collecting chamber.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 7, 2023
    Assignee: ZHEJIANG ORIENT GENE BIOTECH CO., LTD.
    Inventors: Jianqiu Fang, Siyu Lei, Lili Shen
  • Patent number: 11788939
    Abstract: Methods and systems for separating mud from drill cuttings are disclosed. The method includes collecting drill cuttings from a shale shaker or a wellhead, placing the drill cuttings in a fluid that matches the fluid in the drilling mud, and filtering the drill cuttings through a sieve having a first mesh size. The method further includes placing the filtered drill cuttings in a sieve basket having a second mesh size, wherein the second mesh size is smaller than the first mesh size, placing the sieve basket in a vessel, and adding the fluid to completely submerge the drill cuttings in the fluid. The method also includes placing the vessel including the sieve basket, the drill cuttings, and the fluid in a sonicator-shaker, and simultaneously sonicating and shaking the vessel to separate the drill cuttings from contaminants thereon.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: October 17, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Stacey Althaus, Jin-Hong Chen, Gary Eppler
  • Patent number: 11788875
    Abstract: Disclosed is a measurement pickup for determining the mass flow rate of a liquid comprising: at least one measurement tube for carrying the liquid having an inlet-side end section and an outlet-side end section; a support body on which the measurement tube is mounted an exciter for exciting vibrations of the measurement tube; at least one vibration sensor for detecting vibrations of the measurement tube; an operating and evaluation circuit for driving the exciter, for receiving the signals of the vibration sensor, and for ascertaining a measured value representing the mass flow rate. The operating and evaluation circuit comprises an adaptive low-pass filter for filtering the sequence of measured values representing the mass flow rate, wherein the low-pass filter has at least one filter parameter dependent on at least one adaptive controlled variable that, for its part, is dependent on the gas content of the test medium.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: October 17, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Hao Zhu, Rémy Scherrer
  • Patent number: 11768094
    Abstract: The present disclosure relates to a method for determining a volumetric and/or mass flow rate of a medium flowing in a tube, wherein a density and/or a viscosity of the fluid is/are determined using a MEMS sensor chip, wherein the medium flowing in the tube at least partially flows through a measuring channel of the MEMS sensor chip to determine the density and/or the viscosity of the fluid, and wherein the volumetric and/or mass flow rate of the medium is determined regardless of the medium based on a detected pressure drop over the measuring channel of the MEMS sensor chip and the density and/or viscosity determined by the MEMS sensor.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: September 26, 2023
    Assignee: TrueDyne Sensors AG
    Inventors: Patrick Reith, Christof Huber
  • Patent number: 11740114
    Abstract: The Coriolis mass flowmeter includes a measuring tube, an exciter mechanism, a sensor arrangement, and an electronic transmitter circuit including measuring and control electronics and drive electronics connected to the measuring and control electronics. The drive electronics are adapted, in a first operating mode, to generate an electrical driver signal that supplies electrical power to the exciter mechanism such that the measuring tube executes forced oscillations having an excitation frequency and, in a second operating mode, to cease generating the electrical driver signal. The transmitter circuit is adapted to switch the drive electronics from the first operating mode to the second operating mode such that the measuring tube executes free, damped oscillations in the second operating mode, and the measuring and control electronics are adapted to, based on a phase difference between oscillation measuring signals from the sensor arrangement, to generate measured values representing the mass flow rate.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: August 29, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventor: Rémy Scherrer
  • Patent number: 11740153
    Abstract: A method and an apparatus for detecting a defect in a sealed container are provided. The method includes: placing the sealed container in a pressure chamber; filling the chamber with a liquid that is saturated by a test gas such that the sealed container is fully submerged; subjecting the chamber to a pressurized volume of a gaseous mixture that includes the test gas, and then removing the sealed container from the chamber; performing a laser-based headspace analysis of the sealed container in order to measure a partial pressure of the test gas; and using a result thereof to determine whether the sealed container has the defect. The defect may be located on a body of the sealed container that is at or below a level of a product that is contained within the sealed container.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: August 29, 2023
    Assignee: LIGHTHOUSE INSTRUMENTS, LLC
    Inventors: Michael A. Timmins, Ken G. Victor