Patents Examined by Rodney T. Frank
  • Patent number: 11788939
    Abstract: Methods and systems for separating mud from drill cuttings are disclosed. The method includes collecting drill cuttings from a shale shaker or a wellhead, placing the drill cuttings in a fluid that matches the fluid in the drilling mud, and filtering the drill cuttings through a sieve having a first mesh size. The method further includes placing the filtered drill cuttings in a sieve basket having a second mesh size, wherein the second mesh size is smaller than the first mesh size, placing the sieve basket in a vessel, and adding the fluid to completely submerge the drill cuttings in the fluid. The method also includes placing the vessel including the sieve basket, the drill cuttings, and the fluid in a sonicator-shaker, and simultaneously sonicating and shaking the vessel to separate the drill cuttings from contaminants thereon.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: October 17, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Stacey Althaus, Jin-Hong Chen, Gary Eppler
  • Patent number: 11788875
    Abstract: Disclosed is a measurement pickup for determining the mass flow rate of a liquid comprising: at least one measurement tube for carrying the liquid having an inlet-side end section and an outlet-side end section; a support body on which the measurement tube is mounted an exciter for exciting vibrations of the measurement tube; at least one vibration sensor for detecting vibrations of the measurement tube; an operating and evaluation circuit for driving the exciter, for receiving the signals of the vibration sensor, and for ascertaining a measured value representing the mass flow rate. The operating and evaluation circuit comprises an adaptive low-pass filter for filtering the sequence of measured values representing the mass flow rate, wherein the low-pass filter has at least one filter parameter dependent on at least one adaptive controlled variable that, for its part, is dependent on the gas content of the test medium.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: October 17, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Hao Zhu, Rémy Scherrer
  • Patent number: 11768094
    Abstract: The present disclosure relates to a method for determining a volumetric and/or mass flow rate of a medium flowing in a tube, wherein a density and/or a viscosity of the fluid is/are determined using a MEMS sensor chip, wherein the medium flowing in the tube at least partially flows through a measuring channel of the MEMS sensor chip to determine the density and/or the viscosity of the fluid, and wherein the volumetric and/or mass flow rate of the medium is determined regardless of the medium based on a detected pressure drop over the measuring channel of the MEMS sensor chip and the density and/or viscosity determined by the MEMS sensor.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: September 26, 2023
    Assignee: TrueDyne Sensors AG
    Inventors: Patrick Reith, Christof Huber
  • Patent number: 11740114
    Abstract: The Coriolis mass flowmeter includes a measuring tube, an exciter mechanism, a sensor arrangement, and an electronic transmitter circuit including measuring and control electronics and drive electronics connected to the measuring and control electronics. The drive electronics are adapted, in a first operating mode, to generate an electrical driver signal that supplies electrical power to the exciter mechanism such that the measuring tube executes forced oscillations having an excitation frequency and, in a second operating mode, to cease generating the electrical driver signal. The transmitter circuit is adapted to switch the drive electronics from the first operating mode to the second operating mode such that the measuring tube executes free, damped oscillations in the second operating mode, and the measuring and control electronics are adapted to, based on a phase difference between oscillation measuring signals from the sensor arrangement, to generate measured values representing the mass flow rate.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: August 29, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventor: Rémy Scherrer
  • Patent number: 11740153
    Abstract: A method and an apparatus for detecting a defect in a sealed container are provided. The method includes: placing the sealed container in a pressure chamber; filling the chamber with a liquid that is saturated by a test gas such that the sealed container is fully submerged; subjecting the chamber to a pressurized volume of a gaseous mixture that includes the test gas, and then removing the sealed container from the chamber; performing a laser-based headspace analysis of the sealed container in order to measure a partial pressure of the test gas; and using a result thereof to determine whether the sealed container has the defect. The defect may be located on a body of the sealed container that is at or below a level of a product that is contained within the sealed container.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: August 29, 2023
    Assignee: LIGHTHOUSE INSTRUMENTS, LLC
    Inventors: Michael A. Timmins, Ken G. Victor
  • Patent number: 11739601
    Abstract: The flow of well mud being pumped by a drilling rig pump into a wellbore is sensed by monitoring at least one signal from at least one sensor of drilling mud, determining a total well drilling pump mud output rate, and determining an apparent annular mud rate based on the at least one signal and the total pump drilling rate.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: August 29, 2023
    Inventor: H. Udo Zeidler
  • Patent number: 11733262
    Abstract: A physical quantity sensor module includes: a resonant frequency shift based physical quantity sensor whose frequency adjusts with a adjust in physical quantity; a reference signal oscillator which outputs a reference signal; a frequency delta-sigma modulator which performs frequency delta-sigma modulation of the reference signal, using an operation signal based on a measurement target signal as an output from the resonant frequency shift based physical quantity sensor, and generates a frequency delta-sigma modulated signal; a first low-pass filter provided on an output side of the frequency delta-sigma modulator and operating synchronously with the measurement target signal as the output from the resonant frequency shift based physical quantity sensor; and a second low-pass filter provided on an output side of the first low-pass filter and operating synchronously with the reference signal.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: August 22, 2023
    Inventors: Kenta Sato, Masayoshi Todorokihara
  • Patent number: 11725501
    Abstract: A system is for testing the integrity of a well barrier. The system has a well including a wellbore and a upper wellbore termination means, such as a wellhead and a mud circulation system and/or a mud conditioning system comprising means for transporting, cleaning or storing mud outside said wellbore; a barrier provided in the wellbore, the barrier having an upstream side below the barrier and a downstream side above the barrier; a tracer; a storage means for storing said tracer, the storage means being provided in a lower part of the barrier and/or below the barrier in the well; and a release mechanism for releasing the tracer from the storage means, wherein the system further comprises a detector for detecting tracer that has leaked through the barrier and into said mud, the detector being arranged above the wellbore.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: August 15, 2023
    Assignee: Exedra AS
    Inventor: Bernt Reinhardt Pedersen
  • Patent number: 11709085
    Abstract: Described is a method for determining a dwell volume of a liquid chromatography system and a liquid chromatography system that can determined the system dwell volume. The method includes mixing a flow of a first solvent with a flow of a second solvent to form a solvent mixture. The flows of the first and second solvents are decreased and increased, respectively, to generate a gradient composition. A system pressure of the liquid chromatography system is measured to determine a pressure trace defined as the measured system pressure as a function of time. The dwell volume of the system is determined from a time delay determined between the gradient composition at the mixing location and the pressure trace. The method can be performed with a liquid chromatography system having a chromatographic column or a flow restrictor used in place of the chromatographic column.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: July 25, 2023
    Assignee: Waters Technologies Corporation
    Inventors: Jason F. Hill, Martin Gilar, Abhijit Tarafder, Christopher DesJardins
  • Patent number: 11692858
    Abstract: Methods and apparatus for hydrocarbon monitoring are provided. A method that may be performed by a flowmeter or monitoring system includes receiving downhole measurements of a flowing fluid from a flowmeter; determining a standard phase fraction of the flowing fluid based on the downhole measurements from the flowmeter; receiving surface measurements of the flowing fluid; determining a surface phase fraction of the flowing fluid based on the surface measurements; comparing the standard phase fraction to the surface phase fraction; based on the comparison being greater than a predetermined threshold, using the surface measurements as a reference to adjust a speed of sound (SoS) of a first phase until a target value is achieved; and receiving additional downhole measurements of the flowing fluid from the flowmeter, wherein the flowmeter is operating using the adjusted SoS of the first phase.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: July 4, 2023
    Assignee: Weatherford Technology Holdings, LLC
    Inventor: Omer Haldun Unalmis
  • Patent number: 11662360
    Abstract: A physical quantity sensor includes a substrate, a movable body that faces the substrate, a fixed portion that is fixed to the substrate, and a support beam that couples the movable body to the fixed portion. The movable body is displaceable with the support beam as a rotation axis, and includes, in a plan view, a first mass that is located on one side of a second direction with respect to the rotation axis, and a second mass that is located on the other side. Each of the first mass and the second mass has a plurality of through-holes which penetrate through the movable body and each of which has a square shape as an opening shape. When damping is indicated by C, and a minimum value of the damping is indicated by Cmin, C?1.5?Cmin.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: May 30, 2023
    Inventor: Satoru Tanaka
  • Patent number: 11650091
    Abstract: A flowmeter (200) is provided having a flow inlet (210) and a flow outlet (210?). A first conduit (208A) has an inlet leg (212A) fluidly coupled to a central conduit portion (212C), wherein the central conduit portion (212C) is further fluidly coupled to an outlet leg (212?A). A second conduit (208B) has an inlet leg (212B) fluidly coupled to a central conduit portion (212?C), wherein the central conduit portion (212?C) is further fluidly coupled to an outlet leg (212?B). The flow inlet (210) is fluidly coupled to a first end of the first conduit (208A) and a first end of the second conduit (208B), and the flow outlet (210?) is fluidly coupled to a second end of the first conduit (208A) and a second end of the second conduit (208B). A manifold (206) is fluidly coupled to the inlet legs (212A, 212B) and the outlet legs (212?A, 212?B). A driver (214) is at least partially coupled to the manifold, wherein the driver (214) is operable to vibrate the first and second conduits (208A, 208B).
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: May 16, 2023
    Assignee: Micro Motion, Inc.
    Inventor: Martin Andrew Schlosser
  • Patent number: 11649708
    Abstract: A method for determining interfacial tension of a hydrocarbon in a brine fluid, the method including injecting a first brine fluid into a test cell, the first brine fluid having an initial ionic composition, injecting a hydrocarbon fluid into the test cell, contacting the hydrocarbon fluid with the first brine fluid, forming a droplet, measuring the interfacial tension of the hydrocarbon fluid in contact with the first brine fluid, at least partially displacing the first brine fluid with an inert gas, measuring a ionic composition salinity of the displaced first brine fluid in an ionic chromatograph, and comparing the measured ionic composition salinity to the initial ionic composition.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: May 16, 2023
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Salah Hamad Al-Saleh, Ahmed Gmira, Ali Abdullah Al-Yousef
  • Patent number: 11635425
    Abstract: Devices and methods are provided for breath gas analysis when determining the difference in the concentrations of at least one gas in the exhaled breathing air on the one hand and in the ambient air on the other hand. The device may include at least one gas sensor, by means of which the concentration of a gas can be determined, and a line system, through whose lines the exhaled air to be examined, the ambient air and a calibrating gas can be selectively pumped to the gas sensor. The method may include feeding ambient air; feeding calibrating gas to the gas sensor; feeding exhaled air to the gas sensor; feeding calibrating gas to the gas sensor again; and feeding exhaled air to the gas sensor again.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: April 25, 2023
    Assignee: VYAIRE MEDICAL GMBH
    Inventor: Juergen Reinstaedtler
  • Patent number: 11629991
    Abstract: An aspect ratio flow metering device may comprise a concentrate inlet portion, one or more restricted flow portions of tubing fluidly connected to the concentrate inlet portion, and a metered concentrate outlet portion fluidly connected to the one or more restricted flow portion of tubing. The narrowest part of the one or more restricted flow portions of tubing may each have a length (RL): inner diameter (RID) ratio of at least 10:1. The metered concentrate outlet portion may have an inner diameter (OID) greater than RID. The concentrate inlet portion may have an inner diameter (IID) greater than RID. The aspect ratio flow metering device may be structurally configured to limit flow of a concentrate into a hydrodynamic mixing apparatus. Also disclosed are methods for using the aspect ratio flow metering device to mix fluids.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: April 18, 2023
    Assignee: DuBois Chemicals, Inc.
    Inventor: Brent McCurdy
  • Patent number: 11598661
    Abstract: A residual gas volume measuring device for measuring volume of residual gas in a container filled with liquid. The device includes: a puncture member having a first communication path and a second communication path formed therein and connecting a penetrating portion and a coupling portion together, the penetrating portion being located inside the container and the coupling portion being located outside the container when the puncture member is in a penetrating position where an end of the puncture member penetrates into the container; an injection section coupled to the first communication path at the coupling portion and configured to inject a liquid into the container; a discharging section coupled to the second communication path at the coupling portion and configured to discharge the residual gas purged by the injected liquid; and a measurement section configured to measure the volume of the residual gas discharged by the discharging section.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: March 7, 2023
    Assignee: KYOTO ELECTRONICS MANUFACTURING CO., LTD.
    Inventors: Kazuhiro Aoyama, Ryoma Naruko, Yutaka Sato
  • Patent number: 11592326
    Abstract: A filling level indicator for determining a filling level in a tank, having a resistor network, a contact element, and a magnetic element. The contact element is spaced apart from the resistor network and the magnetic element is movable relative to the resistor network and the contact element. The contact element has a contact region deflectable by the magnetic element. An electrically conductive connection between the contact region and the resistor network is produced by deflection of the contact region. The contact region is formed by a planar tape-shaped element and the contact region has contact portions that are spaced apart from one another in the circumferential direction. The contact portions are separated from one another by separation regions.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: February 28, 2023
    Assignee: VITESCO TECHNOLOGIES GMBH
    Inventors: Alexander Cezanne, Hans-Guenter Benner, Matthias Kadler
  • Patent number: 11573215
    Abstract: A system and method for analyzing a gas in a drilling fluid involves a degasser operable to separate the gas from the drilling fluid. A gas analyzer in fluid communication with the degasser receives a sample of the separated gas and determines a property of the gas. A controller in communication with the gas analyzer automates the operation of the gas analyzer by adjusting a parameter of the separated gas sample as the gas sample is supplied to the gas analyzer.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: February 7, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Markus Bernhard Dröge
  • Patent number: 11566899
    Abstract: Described herein are methods and systems for configuring a motion sensor assembly to compensate for a temperature gradient. First and second sensors of the same type are arranged as opposing pairs with respect to a first axis that may be defined by a temperature gradient caused by at least one thermal element. Combining the output measurements of the first sensor and the second sensor allows effects of the temperature gradient on sensor measurements of the first sensor and the second sensor to be compensated.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: January 31, 2023
    Inventors: Karthik Katingari, Jongwoo Shin, Joe Seeger, Vamshi Gangumalla, Ardalan Heshmati, Sheena Shi
  • Patent number: 11536735
    Abstract: A sample processing apparatus includes a pipette configured to dispense a sample or a reagent and an arm supporting the pipette. A camera is configured to capture an image of a tip end of the pipette and a container to which the sample or the reagent is dispensed. A controller is programmed to determine, based on the image, an adjustment value for the arm such that the pipette is inserted into the container without collision.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: December 27, 2022
    Assignee: SYSMEX CORPORATION
    Inventors: Junzo Yamamoto, Shigeo Kanamori, Fumio Inoue, Ikuya Takenaka, Osamu Hirota