Patents Examined by Ron Pompey
  • Patent number: 8652933
    Abstract: Disclosed is a method of forming a semiconductor device structure in a semiconductor layer. The method includes forming a first trench of a first width and a second trench of a second width in the semiconductor layer; depositing a layer of first material which conforms to a wall of the first trench but does not fill it and which fills the second trench; removing the first material from the first trench, the first material remaining in the second trench; depositing a second material into and filling the first trench and over a top of the first material in the second trench; and uniformly removing the second material from the top of the first material in the second trench, wherein the first trench is filled with the second material and the second trench is filled with the first material and wherein the first material is different from the second material.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Paul C. Parries, Yanli Zhang
  • Patent number: 8633529
    Abstract: A semiconductor structure having U-shaped transistors includes source/drain regions at the tops of pairs of pillars defined by crossing trenches in the substrate. One pillar is connected to the other pillar in the pair by a ridge that extends above the surrounding trenches. The ridge and lower portions of the pillars define U-shaped channels on opposite sides of the U-shaped structure, facing a gate structure in the trenches on those opposite sides, forming a two sided surround transistor. Optionally, the space between the pillars of a pair is also filled with gate electrode material to define a three-sided surround gate transistor. One of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. Methods of forming semiconductor structures are also disclosed.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: January 21, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8629026
    Abstract: The present disclosure provides a method for fabricating a high-voltage semiconductor device. The method includes designating first, second, and third regions in a substrate. The first and second regions are regions where a source and a drain of the semiconductor device will be formed, respectively. The third region separates the first and second regions. The method further includes forming a slotted implant mask layer at least partially over the third region. The method also includes implanting dopants into the first, second, and third regions. The slotted implant mask layer protects portions of the third region therebelow during the implanting. The method further includes annealing the substrate in a manner to cause diffusion of the dopants in the third region.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Patent number: 8569102
    Abstract: Disclosed are a high density CIS thin film and a method of manufacturing the same, which includes coating CIS nanopowders, CIGS nanopowders or CZTS nanopowders on a substrate by non-vacuum coating, followed by heat treatment with cavities between the nanopowders filled with filling elements such as copper, indium, gallium, zinc, tin, and the like. The high density CIS thin film is applied to a photo-absorption layer of a thin film solar cell, thereby providing a highly efficient thin film solar cell.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: October 29, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Se-Jin Ahn, Jae-Ho Yun, Ji-Hye Gwak, Ara Cho, Kyung-Hoon Yoon, Kee-Shik Shin, Seoung-Kyu Ahn, Ki-Bong Song
  • Patent number: 8546888
    Abstract: Methods and apparatus are provided. An isolation region is formed by lining a trench formed in a substrate with a first dielectric layer by forming the first dielectric layer adjoining exposed substrate surfaces within the trench using a high-density plasma process, forming a layer of spin-on dielectric material on the first dielectric layer so as to fill a remaining portion of the trench, and densifying the layer of spin-on dielectric material.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: October 1, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Zailong Bian, Xiaolong Fang
  • Patent number: 8546158
    Abstract: A method for distributing phosphor particulates on an LED chip, includes steps of: providing a substrate having an LED chip mounted thereon; dispensing an adhesive on the chip, wherein the adhesive have positively charged phosphor particulates doped therein; providing an upper mold and a lower mold for producing an electric field through the adhesive and moving the upper mold to press the adhesive, wherein the phosphor particulates are driven by the electric field to move to a top face of the chip; and curing the adhesive and removing the upper mold and the lower mold.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: October 1, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Shiun-Wei Chan, Chih-Hsun Ke
  • Patent number: 8535985
    Abstract: A method of making a semiconductor chip assembly includes providing a bump and a ledge, mounting an adhesive on the ledge including inserting the bump into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the bump with an aperture in the conductive layer, then flowing the adhesive between the bump and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, then mounting a semiconductor device on the bump opposite a cavity in the bump, wherein a heat spreader includes the bump and a base that includes a portion of the ledge adjacent to the bump, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
    Type: Grant
    Filed: March 20, 2011
    Date of Patent: September 17, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 8530246
    Abstract: A method for controlling the threshold voltage of a semiconductor element having at least a semiconductor as a component is characterized in including a process to measure one of a threshold voltage and a characteristic value serving as an index for the threshold voltage; a process to determine one of the irradiation intensity, irradiation time, and wavelength of the light for irradiating the semiconductor based on one of the measured threshold voltage and the measured characteristic value serving as the index for the threshold voltage; and a process to irradiate light whose one of the irradiation intensity, irradiation time, and wavelength has been determined onto the semiconductor; wherein the light irradiating the semiconductor is a light having a longer wavelength than the wavelength of the absorption edge of the semiconductor, and the threshold voltage is changed by the irradiation of the light.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: September 10, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masato Ofuji, Yasuyoshi Takai, Takehiko Kawasaki, Norio Kaneko, Ryo Hayashi
  • Patent number: 8513065
    Abstract: A method of manufacturing a display device is disclosed. In one embodiment, the method includes: i) forming a semiconductor layer where a plurality of crystallized areas and a plurality of noncrystallized areas are alternately arranged on a substrate, ii) aligning the substrate based on a difference in contrast ratio between the crystallized and noncrystallized areas and iii) performing a photo process or a photolithography process.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: August 20, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seong-Hyun Jin, Jae-Beom Choi, Won-Kyu Lee, Young-Jin Chang, Jae-Hwan Oh
  • Patent number: 8501613
    Abstract: A method includes forming an under-bump metallurgy (UBM) layer overlying a substrate, and forming a mask overlying the UBM layer. The mask covers a first portion of the UBM layer, and a second portion of the UBM layer is exposed through an opening in the mask. A metal bump is formed in the opening and on the second portion of the UBM layer. The mask is then removed. A laser removal is performed to remove a part of the first portion of the UBM layer and to form an UBM.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: August 6, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Yang Lei, Hung-Jui Kuo, Chung-Shi Liu, Mirng-Ji Lii, Chen-Hua Yu
  • Patent number: 8497575
    Abstract: A method of manufacture of a semiconductor packaging system includes: providing a base substrate having edges; mounting an electrical interconnect on the base substrate; and applying an encapsulant having a reference marker and an opening over the electrical interconnect, the reference marker around the electrical interconnect based on physical locations of the edges.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: July 30, 2013
    Assignee: STATS Chippac Ltd.
    Inventors: In Sang Yoon, JoHyun Bae, DeokKyung Yang
  • Patent number: 8492192
    Abstract: A composition for forming a semiconducting device includes an organic semiconducting material, an agent capable of inhibiting and/or preventing dewetting, and an additional substance, wherein the additional substance is provided in an amount capable of preventing initial crystallization of the composition and reducing the melting point or glass transition temperature of the composition below the melting point or glass transition temperature of the organic semiconducting material. The additional substance may be naphthalene, phenylnaphthalene, anthrance, or diphenylanthrance.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: July 23, 2013
    Assignee: Creator Technology B.V.
    Inventors: Sepas Setayesh, Dagobert M. De Leeuw, Natalie Stutzmann-Stingelin
  • Patent number: 8492262
    Abstract: An assembly is obtained; it includes a substrate; a plurality of wet-able pads formed on a surface of the substrate; and a solder resist layer deposited on the surface of the substrate and having an outer surface. At least the solder resist layer is formed with recessed regions defining volumes adjacent the wet-able pads. Molten solder is directly injected into the volumes adjacent the wet-able pads, such that the volumes adjacent the wet-able pads are filled with solder. The solder is allowed to solidify. It forms a plurality of solder structures adhered to the wet-able pads. The substrate and the solder are re-heated after the solidification, to re-flow the solder into generally spherical balls extending above the outer surface of the solder resist layer. The volumes adjacent the wet-able pads are configured and dimensioned to receive sufficient solder in the injecting step such that the generally spherical balls extend above the outer surface of the solder resist layer as a result of the re-heating step.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Peter A. Gruber, Paul A. Lauro, Jae-Woong Nah
  • Patent number: 8486737
    Abstract: A thin film deposition apparatus and a method of manufacturing an organic light-emitting display device by using the same, and more particularly, to a thin film deposition apparatus that can remove a deposition material deposited on a patterning slit sheet without performing an additional cleaning process, and a method of manufacturing an organic light-emitting display device by using the thin film deposition apparatus.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: July 16, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yun-Mi Lee, Yong-Sup Choi, Hyun-Sook Park, Jong-Heon Kim, Jae-Kwang Ryu, Young-Mook Choi
  • Patent number: 8486792
    Abstract: A silicon compound gas, an oxidizing gas, and a rare gas are supplied into a chamber (2) of a plasma processing apparatus (1). A microwave is supplied into the chamber (2), and a silicon oxide film is formed on a target substrate with plasma generated by the microwave. A partial pressure ratio of the rare gas is 10% or more of a total gas pressure of the silicon compound gas, the oxidizing gas, and the rare gas, and an effective flow ratio of the silicon compound gas and the oxidizing gas (oxidizing gas/silicon compound gas) is not less than 3 but not more than 11.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: July 16, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Hirokazu Ueda, Yoshinobu Tanaka, Yusuke Ohsawa, Toshihisa Nozawa, Takaaki Matsuoka
  • Patent number: 8486772
    Abstract: The method of one embodiment of the present invention includes: a first step of irradiating a bond substrate with ions to form an embrittlement region in the bond substrate; a second step of bonding the bond substrate to a base substrate with an insulating layer therebetween; a third step of splitting the bond substrate at the embrittlement region to form a semiconductor layer over the base substrate with the insulating layer therebetween; and a fourth step of subjecting the bond substrate split at the embrittlement region to a first heat treatment in an argon atmosphere and then a second heat treatment in an atmosphere of a mixture of oxygen and nitrogen to form a reprocessed bond substrate. The reprocessed bond substrate is used again as a bond substrate in the first step.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: July 16, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuya Hanaoka, Hideki Tsuya, Masaharu Nagai
  • Patent number: 8486741
    Abstract: The described process allows trenches to be etched in a structure comprising a support substrate and a multilayer, formed on the substrate, for the definition of wave guides of an integrated optical device and comprises a selective plasma attack in the multilayer through a masking structure that leaves uncovered areas of the multilayer corresponding to the trenches to be etched. Such a masking structure is obtained by forming a mask of metallic material on the multilayer that leaves uncovered the areas corresponding to the trenches to be etched and forming a mask of non-metallic material, for example photoresist, on it that leaves uncovered regions comprising at least part of the areas and an edge portion of the mask of metallic material.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: July 16, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Pietro Montanini, Giovanna Germani, Ilaria Gelmi, Marta Mottura
  • Patent number: 8481401
    Abstract: A method for manufacturing a component having a through-contact includes: providing a substrate; forming an insulating layer on the substrate; structuring the insulating layer, the insulating layer being removed at least in a predetermined trenching area surrounding a selected substrate area; performing an etching process in which the structured insulating layer functions as a mask to remove substrate material in the trenching area and to create a trench structure surrounding the selected substrate area; and forming a metallic layer on the insulating layer, the metallic layer sealing the trench structure.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: July 9, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Jochen Reinmuth
  • Patent number: 8460998
    Abstract: A method of fabricating a semiconductor device including forming a charge storage layer, and forming a first tunnel insulating layer covering the charge storage layer, the forming of the first tunnel insulating layer including heat treating the charge storage layer.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: June 11, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: JinGyun Kim, Myoungbum Lee, Seungmok Shin
  • Patent number: 8460979
    Abstract: A method of forming a backside illuminated image sensor using an SOI substrate including a handle substrate, an insulator formed on the handle substrate, and a semiconductor layer formed on the insulator. A sensor element is formed on the semiconductor layer, a dielectric layer is formed overlying the semiconductor layer and the sensor element; and an interconnection structure is formed in the dielectric layer to electrically connect the sensor element. A carrier substrate is forming the dielectric layer. After flipping, the handle substrate is removed to expose the insulator layer.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: June 11, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jhy-Ming Hung, Jen-Cheng Liu, Dun-Nian Yaung