Patents Examined by Roy King
  • Patent number: 9834828
    Abstract: Aluminum alloy components having improved properties. In one form, the cast alloy component may include about 0.6 to about 14.5 wt % silicon, 0 to about 0.7 wt % iron, about 1.8 about 4.3 wt % copper, 0 to about 1.22 wt % manganese, about 0.2 to about 0.5 wt % magnesium, 0 to about 1.2 wt % zinc, 0 to about 3.25 wt % nickel, 0 to about 0.3 wt % chromium, 0 to about 0.5 wt % tin, about 0.0001 to about 0.4 wt % titanium, about 0.002 to about 0.07 wt % boron, about 0.001 to about 0.07 wt % zirconium, about 0.001 to about 0.14 wt % vanadium, 0 to about 0.67 wt % lanthanum, and the balance predominantly aluminum plus any remainders. Further, the weight ratio of Mn/Fe is between about 0.5 and about 3.5. Methods of making cast aluminum parts are also described.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: December 5, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Herbert W. Doty
  • Patent number: 9828660
    Abstract: A method for manufacturing an aluminum alloy casting includes obtaining the aluminum alloy casting by casting an aluminum alloy into a mold, performing solution heat treatment, rapidly cooling the casting, performing aging treatment, and cooling the casting. The aluminum alloy includes, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, and no more than 0.5% of Mn, and at least one component selected from the group consisting of 0.002 to 0.02% of Na, 0.002 to 0.02% of Ca and 0.002 to 0.02% of Sr, a remainder being Al and inevitable impurities. An internal combustion engine cylinder head is composed of the aluminum alloy casting and manufactured by the method of the casting. The aluminum alloy casting is suitable for applications requiring superior elongation, high cycle fatigue strength and high thermal fatigue strength.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: November 28, 2017
    Assignees: NISSAN MOTOR CO., LTD., NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hiroshi Souda, Kouichi Akiyama, Hiroshi Horikawa, Masahiko Shioda
  • Patent number: 9822433
    Abstract: A spheroidal graphite cast iron comprising: C: 3.3 to 4.0 mass %, Si: 2.1 to 2.7 mass %, Mn: 0.20 to 0.50 mass %, S: 0.005 to 0.030 mass %, Cu: 0.20 to 0.50 mass %, Mg: 0.03 to 0.06 mass % and the balance: Fe and inevitable impurities, wherein a tensile strength is 550 MPa or more, and an elongation is 12% or more.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: November 21, 2017
    Assignee: Kabushiki Kaisha Riken
    Inventors: Kazushige Mito, Naoto Saito
  • Patent number: 9820539
    Abstract: Methods of forming larger sintered compacts of PCD and other sintered ultrahard materials are disclosed. Improved solvent metal compositions and layering of the un-sintered construct allow for sintering of thicker and larger high quality sintered compacts. Jewelry may also be made from sintered ultrahard materials including diamond, carbides, and boron nitrides. Increased biocompatibility is achieved through use of a sintering metal containing tin. Methods of sintering perform shapes are provided.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: November 21, 2017
    Assignee: DIMICRON, INC.
    Inventors: David P Harding, Mark E Richards, Richard H Dixon, Victoriano Carvajal, Bao-Khang Ngoc Nguyen, German A Loesener, A Ben Curnow, Troy J Medford, Trenton T Walker, Jeffery K Taylor, Bill J Pope
  • Patent number: 9821411
    Abstract: The present disclosure provides three-dimensional (3D) objects, 3D printing processes, as well as methods, apparatuses and systems for the production of a 3D object. Methods, apparatuses and systems of the present disclosure may reduce or eliminate the need for auxiliary supports. The present disclosure provides three dimensional (3D) objects printed utilizing the printing processes, methods, apparatuses and systems described herein.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: November 21, 2017
    Assignee: VELO3D, INC.
    Inventors: Benyamin Buller, Erel Milshtein, Thai Cheng Chua
  • Patent number: 9815116
    Abstract: This method for producing porous sintered aluminum includes: mixing aluminum powder with a sintering aid powder containing titanium to obtain a raw aluminum mixed powder; mixing the raw aluminum mixed powder with a water-soluble resin binder, water, and a plasticizer containing at least one selected from polyhydric alcohols, ethers, and esters to obtain a viscous composition; drying the viscous composition in a state where air bubbles are mixed therein to obtain a formed object prior to sintering; and heating the formed object prior to sintering in a non-oxidizing atmosphere, wherein when a temperature at which the raw aluminum mixed powder starts to melt is expressed as Tm (° C.), a temperature T (° C.) of the heating fulfills Tm?10 (° C.)?T?685 (° C.).
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: November 14, 2017
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Koji Hoshino, Ji-bin Yang, Kenji Orito, Shinichi Ohmori
  • Patent number: 9816152
    Abstract: A manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic property includes the steps of smelting a chemical composition of non-oriented silicon steel, by weight percent, is: C?0.0040%, Si:0.1˜0.8%, Al:0.002˜1.0%, Mn:0.10˜1.50%, P:?0.2%, Sb:0.04˜0.08%, S?0.0030%, N?0.0020%, Ti?0.0020%, and the rest is Fe and unavoidable inclusions. The molten steel is then cast into billets which are hot-rolled into a hot-rolled product. The heating temperature for the billet is 1100°˜1150° and the finish-rolling temperature is 860°˜920°. The hot-rolled product is then air cooled for a period of time within a range determined by air cooling time t: (2+30xSb %)s?t?7 s. The hot-rolled product is reeled at a temperature ?720° and cold-rolled to form cold-rolled plate with a target thickness at a reduction ratio of 70˜78% followed by heating up the cold-rolled plate to 800˜1000° at heating rate of ?15°/s, and holding time of 10 s˜25 s.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: November 14, 2017
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Aihua Ma, Bo Wang, Shishu Xie, Zhanyuan Hu, Liang Zou, Zitao Wang, Yuhua Zhu, Jie Huang, Bingzhong Jin, Xiandong Liu
  • Patent number: 9815153
    Abstract: A process for producing a bearing seat or a drive journal having a large diameter on a rolled threaded spindle is disclosed. The blank of the threaded spindle is hot-upset in the longitudinal direction, such that it bulges radially with respect to the longitudinal direction, a first longitudinal region having an enlarged diameter being provided.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: November 14, 2017
    Assignee: Robert Bosch GmbH
    Inventor: Roland Greubel
  • Patent number: 9816155
    Abstract: A process of extracting copper from copper sulphide minerals which is enhanced at solution potentials exceeding 700 mV SHE, in the absence of any microorganism, by contacting the minerals in a pre-treatment phase using an acid solution at a high chloride content containing dissolved copper.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: November 14, 2017
    Assignee: BHP CHILE INC.
    Inventors: Eduardo Luis Patiño Martinez, Michael James Nicol, George Frederick Rautenbach
  • Patent number: 9808890
    Abstract: A solder alloy has an alloy composition containing Zn of 3 through 25 mass %, Ti of 0.002 through 0.25 mass %, Al of 0.002 through 0.25 mass % and balance of Sn, a solder joint made of the solder alloy, and a jointing method using the solder alloy.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: November 7, 2017
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Hikaru Nomura, Shunsaku Yoshikawa
  • Patent number: 9809874
    Abstract: A steel sheet suitable as a starting material for a vehicle impact absorbing member with high absorption of impact energy and resistance to cracking contains, by mass %, C: 0.08-0.30%, Mn: 1.5-3.5%; Si+Al: 0.50-3.0%, P: 0.10% or less, S: at most 0.010%, and N: at most 0.010%, and optionally, one or more types selected from Cr: at most 0.5%, Mo: at most 0.5% , B: at most 0.010%, Ti: less than 0.04%, Nb: less than 0.030%, V: less than 0.5%, Ca: at most 0.010%, Mg: at most 0.010%, REM: at most 0.050%, and Bi: at most 0.050%. The microstructure contains, by area %, bainite: more than 50%, martensite: 3-30%, and retained austenite: 3-15%, the remainder comprising ferrite having an average grain diameter of less than 5 mm. The product of uniform elongation and hole expansion ratio is at least 300%2 and 5% effective flow stress is at least 900 MPa.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: November 7, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasuaki Tanaka, Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Takuya Nishio, Masayuki Wakita, Jun Haga, Toshiro Tomida
  • Patent number: 9803270
    Abstract: A method which allows process-stable hot-dip coating of Ni-alloy steel flat products in a cost- and resource-effective manner, including the following steps: a) provision of a steel flat product obtained by cold- or hot-rolling; b) within 1-30 s, heating the steel flat product to a holding temperature between 700 and 1100° C., under a heating atmosphere of N2; c) holding the steel flat product at the holding temperature for a holding duration of 10-120 s under a holding atmosphere of N2; d) cooling the steel flat product from the holding temperature to a strip inlet temperature of 430-800° C.; and e) passing the steel flat product through an inlet zone, in which an inert or reducing inlet atmosphere predominates, and passing the steel flat product through a melt bath, wherein TP1>TP2>TP4.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: October 31, 2017
    Assignees: ThyssenKrupp Steel Europe AG, Outokumpu Nirosta GmbH
    Inventors: Marc Blumenau, Christopher Gusek, Fred Jindra, Rudolf Schoenenberg, Hans-Joachim Krautschick
  • Patent number: 9803257
    Abstract: A stainless steel material having compositions which contain on the basis of percent by mass, C from 0.04 to 0.12%, Ni from 0 (including a case of no addition) to 5.0%, Cr from 12.0 to 17.0%, N from 0.0 to 0.10%, Si from 0.2 to 2.0%, Mn at 2.0% or less, Cu from 0.0 to 2.0%, P at 0.06% or less, S at 0.006% or less, with residue being Fe and unavoidable impurities. Further, a parent phase has any one of a single phase structure of ferrite phase or martensite phase and a diploid phase structure of ferrite phase and martensite phase. An end of the base material is melt-welded as a joint to form a pipe. The parent phase is provided with carbide uniformly separated at grain boundaries and within grains, with a dissolved amount of C being 0.03% by mass or less.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 31, 2017
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Seiichi Isozaki, Yasutoshi Hideshima, Hiroshi Fujimoto, Satoshi Suzuki
  • Patent number: 9797031
    Abstract: An aluminum casting alloy contains Si: 3.0 wt.-% to 3.8 wt.-% Mg: 0.3 wt.-% to 0.6 wt.-% Cr: 0.25 wt.-% to 0.35 wt.-% Fe: <0.18 wt.-% Mn: <0.06 wt.-% Ti: <0.16 wt.-% Cu: <0.006 wt.-% Sr: 0.010 wt.-% to 0.030 wt.-% Zr: <0.006 wt.-% Zn: <0.006 wt.-% Contaminants: <0.1 wt.-%, and is supplemented to 100 wt.-%, in each instance, with Al.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: October 24, 2017
    Assignee: KSM Castings Group GmbH
    Inventors: Klaus Greven, Manikandan Loganathan, Oliver Grimm, Lutz Wolkenstein, Heinrich Hanekop, Stephan Bukowski
  • Patent number: 9799432
    Abstract: A grain oriented electrical steel sheet has a magnetic domain structure modified by strain introduction without a trace of treatment, in which noise generated when the grain oriented electrical steel sheet is used laminated on an iron core of a transformer is effectively reduced by: setting a magnetic flux density B8 to 1.92 T or higher; then setting a ratio of average magnetic domain width of treated surface after strain-introducing treatment Wa to average magnetic domain width before strain-introducing treatment W0 as Wa/W0<0.4; and setting a ratio of Wa to average magnetic domain width of untreated surface Wb as Wa/Wb>0.7; and further setting a ratio of average width of magnetic domain discontinuous portion Wd in the untreated surface to average width of magnetic domain discontinuous portion in treated surface resulting from strain-introducing treatment Wc as Wd/Wc>0.8; and setting Wc<0.35 mm.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: October 24, 2017
    Assignee: JFE Steel Corporation
    Inventors: Hiroi Yamaguchi, Seiji Okabe, Takeshi Omura, Tadashi Nakanishi
  • Patent number: 9796053
    Abstract: Provided is a high-temperature lead-free solder alloy having excellent tensile strength and elongation in a high-temperature environment of 250° C. In order to make the structure of an Sn—Sb—Ag—Cu solder alloy finer and cause stress applied to the solder alloy to disperse, at least one material selected from the group consisting of, in mass %, 0.003 to 1.0% of Al, 0.01 to 0.2% of Fe, and 0.005 to 0.4% of Ti is added to a solder alloy containing 35 to 40% of Sb, 8 to 25% of Ag, and 5 to 10% of Cu, with the remainder made up by Sn.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: October 24, 2017
    Assignee: SENJU METAL INDUSTRY CO., LTD.
    Inventors: Rei Fujimaki, Minoru Ueshima
  • Patent number: 9790565
    Abstract: A hot-rolled stainless steel sheet having excellent hardness and low-temperature impact properties, in which a ferrite is formed with martensite as a matrix structure, is manufactured by a steel manufacturing process, a continuous casting process, and a hot-rolling process. The hot-rolled stainless steel sheet comprises C, N, Si, Mn, Cr, Ni, Ti, Nb, Mo, and the remainder being Fe and other inevitable impurities, wherein C is 0.01 to 0.03 wt %, Cr is 11 to 14 wt %, Ti is 0.1 to 0.2 wt %, and Nb is 0.1 to 0.2 wt %. The ferrite stability (FS) expressed by the following [formula 1] is 5 to 50, and a ferrite is formed with martensite as a matrix structure. [Formula 1] 4 FS=?215?619C?16.6Mn+23.7Cr?36.8Ni+42.2Mo+96.2Ti+67Nb?237N+17.2Si, wherein the numerical value of each component described in [Formula 1] denotes the content (wt %) of each component.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: October 17, 2017
    Assignee: POSCO
    Inventors: Dong Chul Chae, Gyu Jin Jo, Jae Hwa Lee, Kwang Yuk Kim
  • Patent number: 9779849
    Abstract: An aluminium-based conductive material used in a driving part of robots or various devices and used, for example, in a wiring that is loaded with cyclic bending, as well as an electric wire and a cable using the same, contains 0.1 to 1.0 mass % of scandium and further contains, as a rest part, aluminium and unavoidable impure substances and is formed of a metal texture 10 having crystal grains 11 with an average grain size of 2 ?m or less and aluminium-scandium series nanoprecipitates generated in a grain boundary 12 of the crystal grains 11. Further, it is preferable that the metal texture 10 contains the crystal grains 11 of 1 ?m or less at a cross sectional ratio of 15% or more.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: October 3, 2017
    Assignees: DYDEN CORPORATION, FUKUOKA PREFECTURAL GOVERNMENT, NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventors: Hiroyuki In, Fumiyo Annou, Daisuke Matsunaga, Hiromoto Kitahara, Shinji Ando, Masayuki Tsushida, Toshifumi Ogawa
  • Patent number: 9777350
    Abstract: A high strength interstitial free low density steel and method for producing the steel.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: October 3, 2017
    Assignee: TATA STEEL NEDERLAND TECHNOLOGY B.V.
    Inventors: Cheng Liu, Radhakanta Rana
  • Patent number: 9777352
    Abstract: To provide an oil-well steel pipe having excellent SSC resistance. The oil-well steel pipe according to the present invention contains, by mass percent, C: 0.15 to 0.35%, Si: 0.1 to 0.75%, Mn: 0.1 to 1.0%, Cr: 0.1 to 1.7%, Mo: 0.1 to 1.2%, Ti: 0.01 to 0.05%, Nb: 0.010 to 0.030%, Al: 0.01 to 0.1%, P: at most 0.03%, S: at most 0.01%, N: at most 0.007%, and O: at most 0.01%, the balance being Fe and impurities. The Ti content and the Nb content in a residue obtained by bromine-methanol extraction satisfy equation (1): 100×[Nb]/([Ti]+[Nb])?27.5??(1) where the Ti content (mass %) and the Nb content (mass %) in the residue are substituted for [Ti] and [Nb].
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: October 3, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Atsushi Soma, Tomohiko Omura, Yuji Arai, Mitsuhiro Numata, Toru Takayama, Masanao Seo