Patents Examined by Roy King
  • Patent number: 9610656
    Abstract: A lead-free solder alloy for a vehicle glass according to the present invention contains 26.0 to 56.0 mass % of In, 0.1 to 5.0 mass % of Ag, 0.002 to 0.05 mass % of Ti, 0.001 to 0.01 mass % of Si and the balance being Sn. The lead-free solder alloy may optionally contain 0.005 to 0.1 mass % of Cu and 0.001 to 0.01 mass % of B. This solder alloy can suitably be applied vehicle glasses and show good joint strength to glass materials and high acid resistance, salt water resistance and temperature cycle resistance.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: April 4, 2017
    Assignee: Central Glass Company, Limited
    Inventors: Mizuki Nishi, Takayuki Ogawa, Mitsuo Hori
  • Patent number: 9611533
    Abstract: A method of manufacturing a machine component includes the steps of: preparing a member made of steel; forming a film containing vanadium at a surface by subjecting the member to oxidation; and forming a nitrogen-enriched layer by heating the member having the film formed in a heat treatment gas atmosphere containing nitrogen gas and absent of ammonia gas for carbonitriding.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 4, 2017
    Assignee: NTN CORPORATION
    Inventors: Takumi Fujita, Kazuhiro Yagita
  • Patent number: 9599401
    Abstract: A method and device for controlling a melting and refining process in an electric arc furnace for melting a metal, wherein the electric arc furnace includes molten and solid metal and a slag layer on the surface of the molten metal, wherein an electromagnetic stirrer is arranged for stirring the molten metal. The method includes calculating/determining masses of the molten and solid metal at a point of time, wherein the calculation is based on initial values of the molten and solid metal, an arc power supplied to the electric arc furnace, and temperatures of the molten and solid metal, determining a stirring power based on the calculated/determined masses, and supplying the determined stirring power to the electromagnetic stirrer.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: March 21, 2017
    Assignee: ABB Schweiz AG
    Inventors: Michael Lundh, Xiaojing Zhang, Jan-Erik Eriksson, Lidong Teng, Carl-Fredrik Lindberg
  • Patent number: 9601978
    Abstract: A rotor includes a shorting ring defining a plurality of cavities therein, and a plurality of conductor bars each integral with the shorting ring and having an end disposed within a respective one of the plurality of cavities. The shorting ring and each of the conductor bars are formed from an aluminum alloy including a lanthanoid present in an amount of from about 0.1 part by weight to about 0.5 parts by weight based on 100 parts by weight of the aluminum alloy. An aluminum alloy, and a method of forming a rotor are also disclosed.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: March 21, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Qigui Wang, Richard Jack Osborne, Yucong Wang, Margarita Thompson
  • Patent number: 9593389
    Abstract: A heat treatment method of manufacturing high carbon bearing steel having excellent abrasion resistance and fatigue resistance, a steel wire rod for high carbon bearing steel subjected to the heat treatment, a manufacturing method of the steel wire rod, high carbon bearing steel manufactured by the heat treatment and a soaking method of a steel bloom used for manufacturing the steel wire rod. The heat treatment method of bearings includes the steps of: quenching a bearing-shaped steel part containing, by weight, 0.5% to 1.20% carbon and 1.0% to 2.0% silicon; and partitioning the quenched steel part at a temperature ranging from Ms?100° C. to Ms for at least 10 minutes, where Ms represents a temperature at which formation of martensite will start.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: March 14, 2017
    Assignee: POSCO
    Inventor: Kwan-Ho Kim
  • Patent number: 9587299
    Abstract: This copper alloy for electronic devices includes Mg at a content of 3.3 at % or more and 6.9 at % or less, with a remainder substantially being Cu and unavoidable impurities. When a concentration of Mg is given as X at %, an electrical conductivity ? (% IACS) is in a range of ??{1.7241/(?0.0347×X2+0.6569×X+1.7)}×100, and a stress relaxation rate at 150° C. after 1,000 hours is in a range of 50% or less.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: March 7, 2017
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kazunari Maki, Yuki Ito
  • Patent number: 9587294
    Abstract: Improved aluminum-copper-lithium alloys are disclosed. The alloys may include 3.4-4.2 wt. % Cu, 0.9-1.4 wt. % Li, 0.3-0.7 wt. % Ag, 0.1-0.6 wt. % Mg, 0.2-0.8 wt. % Zn, 0.1-0.6 wt. % Mn, and 0.01-0.6 wt. % of at least one grain structure control element, the balance being aluminum and incidental elements and impurities. The alloys achieve an improved combination of properties over prior art alloys.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: March 7, 2017
    Assignee: ARCONIC INC.
    Inventors: Edward L. Colvin, Roberto J. Rioja, Les A. Yocum, Diana K. Denzer, Todd K. Cogswell, Gary H. Bray, Ralph R. Sawtell, Andre L. Wilson
  • Patent number: 9574255
    Abstract: A rolled steel bar has a composition consisting, by mass percent, of C: 0.27 to 0.37%, Si: 0.30 to 0.75%, Mn: 1.00 to 1.45%, S: 0.008% or more and less than 0.030%, Cr: 0.05 to 0.30%, Al: 0.005 to 0.050%, V: 0.200 to 0.320%, and N: 0.0080 to 0.0200%, the balance being Fe and impurities. The contents of P, Ti and O in the impurities are, by mass percent, P: 0.030% or less, Ti: 0.0040% or less, and O: 0.0020% or less. Y1 expressed by the formula <1> is 1.05 to 1.18. Y1=C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V?(5/7)S??<1>. C, Si, Mn, Cr, V, and S in the formula represent mass percent of the elements. A hot-forged part having a tensile strength of 900 MPa or higher and a transverse endurance ratio of 0.47 can be obtained by the rolled steel bar.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: February 21, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Masashi Higashida, Hitoshi Matsumoto, Naoki Matsui, Yutaka Neishi, Taizo Makino
  • Patent number: 9564254
    Abstract: An aluminum (Al) alloy wire, which is an extra fine wire having a wire diameter of 0.5 mm or less, contains, in mass %, Mg at 0.03% to 1.5%, Si at 0.02% to 2.0%, at least one element selected from Cu, Fe, Cr, Mn and Zr at a total of 0.1% to 1.0% and the balance being Al and impurities, and has an electrical conductivity of 40% IACS or more, a tensile strength of 150 MPa or more, and an elongation of 5% or more. By producing the extra fine wire from an Al alloy of a specific composition containing Zr, Mn and other specific elements, though the extra fine wire is extra fine, it has a fine structure with a maximum grain size of 50 ?m or less and is superior in elongation.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: February 7, 2017
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD.
    Inventors: Hiroyuki Kobayashi, Yoshihiro Nakai, Taichiro Nishikawa, Yoshiyuki Takaki, Misato Kusakari, Yasuyuki Otsuka
  • Patent number: 9555473
    Abstract: An apparatus for increasing the bulk density of metal powder may include a sealed chamber, a nozzle, and a target. The sealed chamber may include an inert environment. The nozzle may be coupled to an inert gas source and may be configured to introduce raw metal powder into a flow of the inert gas for discharge as a cold spray mixture of the raw metal powder and the inert gas into the chamber. The target may be housed within the sealed chamber and may be configured to receive an impact of the cold spray mixture. The nozzle and the target may be configured to flatten the raw metal particles into flattened metal particles in response to the cold spray mixture impacting the target.
    Type: Grant
    Filed: October 8, 2011
    Date of Patent: January 31, 2017
    Assignee: The Boeing Company
    Inventor: Kevin Thomas Slattery
  • Patent number: 9546413
    Abstract: Disclosed is a hot-rolled steel sheet including, by mass %, C:0.02% to 0.5% of C, and the sum of the content of Si and the content of Al is 1.0% to 4.0%. An average pole density of an orientation group from {100}<011> to {223}<110> is 1.0 to 6.5, and a pole density of a crystal orientation {332}<113> is 1.0 to 5.0. A microstructure includes, by of an area ratio, 2% to 30% of retained austenite, 20% to 50% of ferrite, and 10% to 60% of bainite. rC that is a Lankford value in a direction orthogonal to a rolling direction is 0.70 to 1.10, and r30 that is a Lankford value in a direction forming an angle of 30° with the rolling direction is 0.70 to 1.10.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: January 17, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Takayuki Nozaki, Manabu Takahashi, Nobuhiro Fujita, Hiroshi Yoshida, Shinichiro Watanabe, Takeshi Yamamoto, Chisato Wakabayashi, Riki Okamoto, Kohichi Sano
  • Patent number: 9546411
    Abstract: An aluminum-alloy sheet includes 0.10 to 0.40 mass % of Si, 0.35 to 0.80 mass % of Fe, 0.10 to 0.35 mass % of Cu, 0.20 to 0.80 mass % of Mn, and 1.5 to 2.5 mass % of Mg, the balance being Al and unavoidable impurities, wherein a content ratio (Si/Fe) of the Si to the Fe is 0.75 or less, the solute Mn content is 0.12 to 0.20 mass %, and the aluminum-alloy sheet has a proof stress of 225 N/mm2 or more after having been baked at 270° C. for 20 seconds.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: January 17, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Yuji Inoue, Yasuhiro Aruga, Katsushi Matsumoto, Kiyohito Tsuruda, Kazuharu Masada
  • Patent number: 9534279
    Abstract: A high-strength cold-rolled steel sheet has a chemical composition including C of 0.05% to 0.30%, Si of greater than 0% to 3.0%, Mn of 0.1% to 5.0%, P of greater than 0% to 0.1%, S of greater than 0% to 0.02%, Al of 0.01% to 1.0%, and N of greater than 0% to 0.01%, in mass percent, with the remainder including iron and inevitable impurities. The steel sheet has a microstructure containing ferrite as a soft primary phase in an area percentage of 20% to 50% with the remainder including tempered martensite and/or tempered bainite as a hard secondary phase. The ferrite grains are adapted to contain cementite particles having an appropriate size in an appropriate number density.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: January 3, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomokazu Masuda, Hideo Hata, Katsura Kajihara, Toshio Murakami, Masaaki Miura, Muneaki Ikeda
  • Patent number: 9534282
    Abstract: By changing the timing of applying a heat treatment, a high-strength aluminum based alloy-made fastening part having an unprecedented tensile strength or other strength property and a method for manufacturing of the same are provided. The method is characterized in that an aluminum based alloy-made material is subjected to a solution treatment and is then age-hardened; work hardening is further applied to a shaft portion by drawing thereof in a heading process; and the shaft portion is thereafter subjected to a process of rolling male threads.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: January 3, 2017
    Assignee: TOPURA CO., LTD.
    Inventor: Kouhei Miyamoto
  • Patent number: 9528172
    Abstract: A high-strength steel sheet having improved HIC resistance and fracture resistance even when it is thick has a chemical composition comprising, in mass %, C: 0.02-0.07%, Si: 0.05-0.50%, Mn: 1.10-1.60%, P: at most 0.015%, S: at most 0.0030%, Nb: 0.005-0.030%, Ti: 0.005-0.020%, Al: 0.005-0.060%, Ca: 0.0005-0.0060%, N: 0.0015-0.0070%, at least one of Cu, Ni, Cr, and Mo in a total of greater than 0.1% to less than 1.5%, and a remainder of Fe and impurities and a steel structure composed of at least 10% by area of bainite and a remainder of ferrite and pearlite. The degree of segregation is less than 1.6 for Nb and less than 1.4 for Mn in the central portion of the thickness of the steel sheet.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 27, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Izuru Minato, Nobuaki Takahashi, Akio Yamamoto
  • Patent number: 9527369
    Abstract: For manufacturing an aluminum alloy automobile suspension part, an ingot material is heat treated and forged, a through-hole is formed therein and it is subjected to thermal refining. A minimum length between a rib end on a side of the through-hole and a through-hole end is made 6 mm or larger.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: December 27, 2016
    Assignee: Kobe Steel, Ltd.
    Inventors: Shogo Sakamoto, Yoshiya Inagaki
  • Patent number: 9518312
    Abstract: A Al—Mg—Si-based, casting aluminum alloy comprising by mass 4-6% of Mg, 3.1-4.5% of Si, 0.5-1% of Mn, 0.1-0.3% of Cr, and 0.1-0.4% of Cu, the balance being Al and inevitable impurities.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 13, 2016
    Assignee: HITACHI METALS, LTD.
    Inventors: Hideki Yamaura, Hidetsuna Watanabe
  • Patent number: 9518781
    Abstract: A panel cooled with a fluid, for metallurgic furnaces, includes a first chamber having a face which, in assembly conditions, is configured to face an interior of a metallurgic furnace and an opposite face in thermal contact with a face of a second chamber whose opposed face is configured to face, in assembly conditions, an external part of the metallurgic furnace. The first and second chambers are mutually independent. The first and second chambers each include an inlet and outlet of a cooling fluid. The panel has a first working configuration in which the first chamber is passed by a first cooling fluid and the second chamber is passed by a second cooling fluid different from the first cooling fluid, and a second working configuration in which the first chamber is passed by the second cooling fluid and the second chamber is passed by the first cooling fluid.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: December 13, 2016
    Assignee: TENOVA S.p.A.
    Inventors: Fabio Maddalena, Luciano Camisani, Silvio Maria Reali
  • Patent number: 9518309
    Abstract: A method of manufacturing a porous metal foam having pores of nano size includes: manufacturing a porous polymer foam containing pores of nano size; and coating metal on the porous polymer foam through electroless plating. The present invention provides porous metal foams which contains nano-sized pores and hence, their specific surface area is maximized owing to the regularly-patterned nanoporous structure formed inside.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: December 13, 2016
    Assignee: KOOKMIN UNIVERSITY INDUSTRY ACADEMY COOPERATION FOUNDATION
    Inventors: Myoung-Geun Choi, Hyun-Gyung Jo, Hye-Ji Park, Yoon-Sook Noh, Yun-Sung Kim, Chang-Ui Ahn, Seok-Woo Jeon, Dong-Seok Kim, Do-Kyung Kim, Hee-Man Choe
  • Patent number: 9506130
    Abstract: A steel, namely for marine applications, comprises by weight percent: carbon: 0.05 to 0.20; silicon: 0.15 to 0.55; manganese: 0.60 to 1.60; chromium: 0.75 to 1.50; aluminum: 0.40 to 0.80; niobium and/or vanadium: 0.01<[Nb]+[V]<0.60; sulphur: up to 0.045; and phosphorous: up to 0.045.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: November 29, 2016
    Assignee: ARCELORMITTAL COMMERCIAL RPS S.A.R.L.
    Inventor: Anne Fagot