Patents Examined by Sally Merkling
  • Patent number: 10150993
    Abstract: Provided herein is technology relating to depositing and/or placing a macromolecule at a desired site for an assay and particularly, but not exclusively, to methods and systems for placing or guiding a macromolecule such as a protein, a nucleic acid, or a protein: nucleic acid complex to an assay site, such as near a nanopore, a nanowell, or a zero mode waveguide.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 11, 2018
    Assignee: IBIS BIOSCIENCES, INC.
    Inventor: Mark A. Hayden
  • Patent number: 10118172
    Abstract: A fluid analysis cartridge includes a reference well including a macromolecular coloring reagent having an optical characteristic that varies according to a thickness of the reference well, and a test well including a test reagent having an optical characteristic that varies according to a concentration of a component of a fluid sample that reacts with the test reagent and a thickness of the test well.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: November 6, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeo Young Shim, Jong Myeon Park, Jae Sung Lee, Do Gyoon Kim, Young Seop Seong, Yeong Bae Yeo, Hae Seok Lee, Kyu Youn Hwang
  • Patent number: 10112195
    Abstract: Provided is a flow cell for nucleic acid analysis used for a sequence reaction with photocleavable nucleotides where an efficiency of the photocleaving reaction can be enhanced and noise upon florescence detection can be mitigated, thereby improving the accuracy of sequencing, shortening a runtime, and extending a read length. The flow cell for nucleic acid analysis includes a first substrate 101 provided with an optical filter 102 reflecting first light for changing a chemical structure of a substance in a flow passage, a hollow sheet 103 having a hollow portion for forming the flow passage, and a second substrate 105 transmitting the first light, in which the first substrate, the hollow sheet, and the second substrate are attached to each other.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: October 30, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masatoshi Narahara, Tomohiro Shoji
  • Patent number: 10112194
    Abstract: A substrate for use in manufacture of a production master plate for production of a detection disc for carrying samples in an apparatus for detection of microscopic objects in a fluid, the substrate having a channel and separate focus structure, wherein the focus structure is a groove.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: October 30, 2018
    Assignee: Q-linea AB
    Inventors: Jonas Sven Peter Jarvius, Jan Grawe
  • Patent number: 10114005
    Abstract: An object of the present invention is that variations in an applied membrane potential in the planar patch clamp device are suppressed to reduce a noise current, thereby enabling accurate measurement of an ion channel current. Disclosed is a planar patch clamp device including: an electrically insulative substrate provided with one or more fine through holes; a liquid reservoir that holds a conductive liquid provided on both surface sides of the through hole; and energizable electrode sections provided in the liquid reservoir; these electrode sections including: (a) an electrode vessel, at least part of which is made of an inorganic porous material, (b) an electrode in which a chloride NmCl layer is formed on the surface of a noble metal Nm, and (c) an electrode solution containing NmCl and an alkali metal chloride being dissolved therein at a saturated concentration.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: October 30, 2018
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Tsuneo Urisu, Zhi-hong Wang, Hidetaka Uno, Senthil Kumar Obuliraj, Yasutaka Nagaoka
  • Patent number: 10100356
    Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: October 16, 2018
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Mark F. Oldham, Kosar Baghbani Parizi, Eric S. Nordman
  • Patent number: 10093965
    Abstract: A system for preparing and analyzing a sample of biological material, including a test cartridge having a first housing defining a flow-through chamber, a second housing defining a central space within which the first housing is at least partially located. The first housing is rotatable relative to the second housing, and the second housing defines a plurality of circumferentially spaced chambers, one of the chambers having an inlet for receiving a sample, at least one of the chambers containing a liquid reagent, and at least one of the chambers comprising an analysis module, the chambers of the second housing each having an opening into the central space. The first housing has one or more openings into the central space so that openings can be selectively aligned with one of the openings into the chambers of the second housing by relative rotation of the first housing and second housings.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: October 9, 2018
    Assignee: DNA NUDGE LIMITED
    Inventors: Christofer Toumazou, Stuart Bhimsen Lowe, Steven William Green, Piers Sebastian Harding, Giles Hugo William Sanders, Nicholas James Wooder, Andreas Augustinus Werdich, Michiel Clemens Rene Twisk, Rene Heinz Joaquim Zander, Jonathan Casey, Hannah Victoria Hare, Richard Lintern, Stephanie Weichert, Steven James Wakefield, Kathrin Herbst, Luciano Zanchet
  • Patent number: 10087438
    Abstract: A solid-core ring-magnet having one or more cavities is provided. The magnet can have an overall cylindrical shape or a rectangular-prism shape. In either case, a portion of cavity walls of the magnet are ring shaped, causing the magnetic field lines to emanate from the magnet in the shape of a ring. The diameter of the ring shaped cavities can be constant throughout, constant through a portion of the cavity, variant throughout, or variant through a portion of the cavity. The cavities open to the end of the magnet, and terminate toward the core of the magnet. Also provided are systems and kits having solid-core ring-magnets. Methods of purifying a macromolecule using the solid-core ring-magnets are also provided.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: October 2, 2018
    Assignee: Alpaqua Engineering, LLC
    Inventor: Olaf Stelling
  • Patent number: 10059982
    Abstract: In one embodiment, a method is provided for the manufacture of a nano-sensor array. A base having a sensing region is provided along with a plurality of nano-sensors. Each of the plurality of nano-sensors is formed by: forming a first nanoneedle along a surface of the base, forming a dielectric on the first nanoneedle, and forming a second nanoneedle on the dielectric layer. The first nanoneedle of each sensor has a first end adjacent to the sensing region of the base. The second nanoneedle is separated from the first nanoneedle by the dielectric and has a first end adjacent the first end of the first nanoneedle. The base is provided with a fluidic channel. The plurality of nano-sensors and the fluidic channel are configured and arranged with the first ends proximate the fluidic channel to facilitate sensing of targeted matter in the fluidic channel.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: August 28, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Hesaam Esfandyarpour
  • Patent number: 10060893
    Abstract: A dual-function heat indicator for monitoring two or more modes of heat exposure is described. A manufacturing process for the dual-function heat indicator is also described. Dual-function heat indicators as described may be useful for monitoring the exposure of host products, with which the dual-function heat indicators may be associated, to cumulative ambient heat exposure and to a peak ambient heat exposure, and for other purposes.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: August 28, 2018
    Assignee: TEMPTIME CORPORATION
    Inventors: Thaddeus Prusik, Dawn E. Smith, Dene H. Taylor, Mohannad Abdo
  • Patent number: 10031086
    Abstract: A dual-function heat indicator for monitoring two or more modes of heat exposure is described. A manufacturing process for the dual-function heat indicator is also described. Dual-function heat indicators as described may be useful for monitoring the exposure of host products, with which the dual-function heat indicators may be associated, to cumulative ambient heat exposure and to a peak ambient heat exposure, and for other purposes.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: July 24, 2018
    Assignee: TEMPTIME CORPORATION
    Inventors: Thaddeus Prusik, Dawn E. Smith, Dene H. Taylor, Raquiba Hoque Arnold
  • Patent number: 10030266
    Abstract: In the field of the next generation DNA sequencer, a method for integrating very high sensitive FET sensors having side gates and nanopores as devices used for identifying four kinds of base and for mapping the base sequence of DNA without using reagents, and a semiconductor device having selection transistors and amplifier transistors respectively corresponding to the FET sensors having side gates and nanopores respectively so as to be able to read the variation of a detection current based on the differences among the charges of the four kinds of base without deteriorating the detection sensitivity of the FET sensor, are presented.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: July 24, 2018
    Assignee: HITACHI, LTD.
    Inventors: Itaru Yanagi, Riichiro Takemura, Yoshimitsu Yanagawa, Takahide Yokoi, Takashi Anazawa
  • Patent number: 9999887
    Abstract: An apparatus for a test liquid includes an inlet device defining a chamber configured to receive the liquid, a preparation device defining a preparation chamber and including a preparation reagent to be reacted with the liquid, an analysis device defining an exposure chamber associated with the preparation chamber and including an analysis unit to be exposed to the prepared test liquid for indicating information on the test liquid, a housing defining a longitudinal axis, and a guiding device configured to guide the inlet device, the preparation device or the analysis device so as to limit the motion of the inlet device, the preparation device or the analysis device to a sequence of alternating rotational and axial movements, each axial movement of the inlet device, the preparation device or the analysis device requiring activation through a preceding rotational movement of the inlet device, the preparation device or the analysis device.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: June 19, 2018
    Assignee: SULZER MIXPAC AG
    Inventor: Josef Ettlin
  • Patent number: 9999884
    Abstract: A disposable cartridge for rapidly metering a sample for measuring a property of the sample is described. The cartridge can receive a sample when it is in an unsealed configuration, and a cap is used to facilitate metering of the sample and sealing the cartridge. When the cartridge is in a sealed configuration, pressurized air is used to push the metered sample into a chamber containing at least one reagent, and subsequently into a detection chamber for measuring a property of the sample.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: June 19, 2018
    Assignee: INVIDX CORP.
    Inventor: James Samsoondar
  • Patent number: 9968929
    Abstract: A reaction cassette and a biochemical assay device are disclosed. The reaction cassette for biochemical assay comprises a housing with structural walls defining a liquid mixing space for accommodating at least one mixing zone, wherein the at least one mixing zones comprises at least one blending structures for generating a vortex phenomenon in liquid, thereby improving the degree of mixture of a liquid sample and a dried reagent.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: May 15, 2018
    Assignee: APEX BIOTECHNOLOGY CORP.
    Inventors: Sz Hau Chen, Ming Chang Hsu, Ya Chun Wu, Tin En Lin
  • Patent number: 9968934
    Abstract: A fluidic sample test apparatus has a mounting part such that the temperature of a fluidic sample, which is inserted into the mounting part, is uniformly maintained. The fluidic sample test apparatus includes a main body having a mounting part into which a sample cartridge is inserted, a metal panel disposed on one surface of the mounting part, and a printed circuit board (PCB) disposed on another surface of the mounting part facing the one surface. One side of the metal panel is in contact with the PCB.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: May 15, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong Young Kim, Seung Woo Han, Hyun-Suk Kang
  • Patent number: 9957559
    Abstract: The present invention provides for a novel system and method for amplification and detection of nucleic acids within a miniaturized device wherein sample administration occurs via capillary forces through a channel created by drying a hydrogel containing all components needed for a cell-free, enzymatic, nucleic-acid amplification system other than the template nucleic acid or precursor thereto, and wherein an aqueous sample is provided to the desiccated hydrogel, and the hydrogel is rehydrated, through capillary forces.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: May 1, 2018
    Assignee: The Governors of the University of Alberta
    Inventor: Damikka Manage
  • Patent number: 9945881
    Abstract: After an analysis start instruction is input in a state where a sample is not dispensed to all of reaction containers 104 mounted on a reaction disc 105, before completing an analysis preparation washing process for washing the reaction container 104 to be used in analyzing the sample to be first analyzed, a soaking and washing process for performing soaking and washing during a predetermined period of time is controlled to be started by dispensing a soaking and washing detergent to another reaction container 104 different from the reaction container 104. In this manner, the soaking and washing can be efficiently performed on the reaction container without hindering an analysis process.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: April 17, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoshiaki Saito, Toshihide Orihashi, Kazuhiro Nakamura
  • Patent number: 9932360
    Abstract: Disclosed herein are “equipment-free” flow-through assay devices based on patterned porous media, methods of making same, and methods of using same. The porous, hydrophilic media are patterned with hydrophobic barriers for performing assays on liquids.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: April 3, 2018
    Assignee: The Penn State Research Foundation
    Inventors: Scott Thomas Phillips, Gregory Gerald Lewis, Jessica Sloane Robbins
  • Patent number: 9931631
    Abstract: A portable, disposable in-vitro diagnostic apparatus and method of performing a point-of-care invitro-diagnostic test is provided. The method includes disposing a specimen to be analyzed in a disposable diagnostic apparatus. Then, channeling a first fluid through a first channel into a first chamber and causing an actuator member to expand upon contact with the fluid from a compressed, deactivated state to an expanded, activated state, thereby causing a second fluid to be pumped outwardly from the first chamber under bias of the actuator to a second chamber for analysis.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 3, 2018
    Inventor: David W. Wright