Patents Examined by Samuel C. Woolwine
  • Patent number: 11162130
    Abstract: A method includes coupling a molecular diagnostic test device to a power source. A biological sample is conveyed into a sample preparation module. The device is then actuated by only a single action to cause the device to perform the following functions without further user action. First, the device heats the sample via a heater of the sample preparation module to lyse a portion of the sample. Second, the device conveys the lysed sample to an amplification module and heats the sample within a reaction volume of the amplification module to amplify a nucleic acid thereby producing an output solution containing a target amplicon. The device then reacts, within a detection module, each of (i) the output solution and (ii) a reagent formulated to produce a signal that indicates a presence of the target amplicon within the output solution. A result associated with the signal is then read.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: November 2, 2021
    Assignee: Visby Medical, Inc.
    Inventors: Boris Andreyev, Victor Briones, Ryan T. Cena, Adam De La Zerda, Colin Kelly, Gregory Loney, Gary Schoolnik, David Swenson
  • Patent number: 11155855
    Abstract: The invention is a novel method of generating a library of circular single stranded nucleic acid molecules by utilizing circular capture molecules. The method is not limited by size of target nucleic acid molecules and can potentially accommodate very long molecules. The method finds application in nucleic acid sequencing, e.g., nanopore sequencing where unlimited-length templates can be read.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: October 26, 2021
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Rui Chen, Toumy Guettouche, Aaron Richardson
  • Patent number: 11155852
    Abstract: The present invention refers to a method for immuno-histochemical staining of a formalin-fixed, paraffin-embedded tissue section comprising the steps of a) providing a solid support, b) mounting the formalin-fixed, paraffin-embedded tissue section onto the solid support, c) removing the paraffin from the formalin-fixed, paraffin-embedded tissue section, d) heating the tissue section mounted on the solid support to retrieve epitopes at 50 to 70° C. for 12 to 24 h, and e) staining the tissue section mounted on the solid support, wherein at least step e) is performed in the presence of 0.5 to 3.0 M sodium chloride. The present invention further refers to a kit for performing the method.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: October 26, 2021
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Beatrix Bahle, Andrea Herold, Sabine Lohmann, Sabine Moosmann, Julian Schuster, Monika Singer
  • Patent number: 11149296
    Abstract: Methods are provided for detecting antigen binding agents in samples. Aspects of the methods include detection of the aggregation of antigen binding agents with polynucleotide-bound antigens by sensitive proximity-based association of the antigen-bound polynucleotides. Aspects of the methods also include methods for the detection of such proximity-based association through nucleic acid amplification. In addition, compositions, e.g., reagents, kits, and devices, useful in practicing various embodiments of the methods are provided.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: October 19, 2021
    Assignee: the regents of the university of california
    Inventors: Peter Robinson, Cheng-Ting Tsai, Carolyn Bertozzi
  • Patent number: 11135592
    Abstract: A multiplex slide plate device is provided, including a slide plate, a sacrificial layer, and a housing. The slide plate has reaction vessels arranged in an array. The sacrificial layer has a microfluidic channel, which has an injection channel, a main channel, and a distal channel connected to each other. The housing is used to accommodate the slide plate and the sacrificial layer, and is composed of a cover and a tray, and the cover has an injection hole, an exhaust hole, and a storage tank. A sample solution and an oil are injected from the injection hole into the injection channel, wherein the sample solution is pushed by the oil. The sample solution loads into each of the reaction vessels while flowing through the main channel. Excess waste liquid flows from the exhaust hole into the storage tank, and is covered by the oil and cannot reflow.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: October 5, 2021
    Assignee: Quark Biosciences Taiwan, Inc.
    Inventors: Cheng-Wey Wei, Chia-Hao Chang
  • Patent number: 11118216
    Abstract: Disclosed are compositions, methods and kits for determining the presence, absence, amount, copy number, or other characteristics of one or more polynucleotide sequences in two or more samples and use thereof in genotyping, evaluation of copy number variation, expression analysis, determination of splice variants and fusion genes, and other genetic analyses.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: September 14, 2021
    Assignee: AFFYMETRIX, INC.
    Inventors: Heather Koshinsky, John D. Curry, Robert O'Callahan, Adam McCoy, Daniel Fitzpatrick, Philip H. Dickinson, Anthony C. Schweitzer
  • Patent number: 11111514
    Abstract: The invention encompasses a method for amplifying at least two different nucleic acid sequences. In particular, the method encompasses a multiplexed nucleic acid patch polymerase chain reaction.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: September 7, 2021
    Assignee: Washington University
    Inventors: Robi M. Mitra, Katherine E. Varley
  • Patent number: 11111532
    Abstract: The invention relates to a new method of characterising a target ribonucleic acid (RNA) involving forming a complementary polynucleotide. The method uses a transmembrane pore.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 7, 2021
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Clive Gavin Brown, Daniel John Turner, James White
  • Patent number: 11104941
    Abstract: This disclosure provides, among other things, a 5? adapter of the formula 3?*—X—(5?5?)—Y—3?, where: 3?* is a blocked 3? end, X is a synthetic sequence, (5?5?) is an internal 5?-5? linkage, Y is an adapter sequence, and 3? is a hydroxylated 3? end. In use, sequence X hybridizes to sequence X? in a population of RNA molecules of formula R—X?, which increases the efficiency of ligation of the 5? adapter to the nucleic acid molecules.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: August 31, 2021
    Assignee: BIOO SCIENTIFIC CORPORATION
    Inventors: Kevin Allen, Suk Ho Eun
  • Patent number: 11107552
    Abstract: Disclosed are data processing and analysis methods for gene expression data for identifying endogenous reference genes and a composition for the quantitative analysis of gene expression, comprising a pair of primers and/or probes useful in amplifying the identified endogenous reference genes. Introduced with the concepts of “Zero's proportion” and CV, the method allows different datasets to be integrally analyzed, thereby searching for novel reference genes. By the method, 2,087 genes are first found as housekeeping genes which are expressed in most tissues, and the usefulness thereof in the relative quantification of different target genes is determined by analyzing their expression stability. Of the 2,087 genes, 13 genes show higher expression stability with lower expression levels across a wide range of samples than traditional reference genes such as GAPDH and ACTS, and therefore are suitable for the normalization of universal genes having relatively low expression levels.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: August 31, 2021
    Assignees: ABION, INC., GENCURIX INC.
    Inventors: Young Kee Shin, Mi Jeong Kwon, En Sel Oh, Yong Ho In, Sang Seok Koh
  • Patent number: 11098347
    Abstract: The present invention provides a reciprocal-flow-type nucleic acid amplification device comprising: heaters capable of forming a denaturation temperature zone and an extension/annealing temperature zone; a fluorescence detector capable of detecting movement of a sample solution between the two temperature zones; a pair of liquid delivery mechanisms that allow the sample solution to move between the two temperature zones and that are configured to be open to atmospheric pressure when liquid delivery stops; a substrate on which the chip for nucleic acid amplification according to claim 2 can be placed; and a control mechanism that controls driving of each liquid delivery mechanism by receiving an electrical signal from the fluorescence detector relating to movement of the sample solution from the control mechanism; the device being capable of performing real-time PCR by measuring fluorescence intensity for each thermal cycle.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: August 24, 2021
    Assignees: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, KYORIN Pharmaceutical Co., Ltd.
    Inventors: Hidenori Nagai, Shunsuke Furutani, Yoshihisa Hagihara, Yusuke Fuchiwaki
  • Patent number: 11098346
    Abstract: The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a porous receiving element having an input region and a receiving region, a first fluid source and a second fluid source positioned within the input region of the receiving element; wherein the first fluid source is positioned between the second fluid source and the receiving region, and wherein, when both the first and second fluid sources are in fluid connection with the input region, the device is configured to sequentially deliver the first fluid and the second fluid to the receiving region without leakage.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: August 24, 2021
    Assignee: University of Washington
    Inventors: Joshua Bishop, Joshua Buser, Samantha Byrnes, Shivani Dharmaraja, Elain S. Fu, Jared Houghtaling, Peter C. Kauffman, Sujatha Kumar, Lisa Lafleur, Tinny Liang, Barry Lutz, Bhushan Toley, Maxwell Wheeler, Paul Yager, Xiaohong Zhang
  • Patent number: 11098345
    Abstract: This present disclosure provides methods and systems for measuring the concentration of multiple nucleic acid sequences in a sample. The nucleic acid sequences in the sample are simultaneously amplified, for example, using polymerase chain reaction (PCR) in the presence of an array of nucleic acid probes. The amount of amplicon corresponding to the multiple nucleic acid sequences can be measured in real-time during or after each cycle using a real-time microarray. The measured amount of amplicon produced can be used to determine the original amount of the nucleic acid sequences in the sample. Also provided herein are biosensor arrays, systems and methods for affinity based assays that are able to simultaneously obtain high quality measurements of the binding characteristics of multiple analytes, and that are able to determine the amounts of those analytes in solution. The present disclosure also provides a fully integrated bioarray for detecting real-time characteristics of affinity based assays.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: August 24, 2021
    Assignee: California Institute of Technology
    Inventors: Arjang Hassibi, Babak Hassibi, Haris Vikalo, Jose Luis Riechmann
  • Patent number: 11098348
    Abstract: Disclosed herein are methods and compositions for detection of target polynucleotides in a mixed sample by amplification of the target polynucleotide and detection in a nanopore device.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: August 24, 2021
    Assignee: Ontera Inc.
    Inventors: Trevor J. Morin, Tyler Shropshire, William B. Dunbar, Daniel A. Heller, Hongyun Wang
  • Patent number: 11091802
    Abstract: The present invention relates to a nucleic acid complex pair for detecting a target nucleic acid in a sample, and more particularly to a nucleic acid complex pair used for detecting a target DNA in a sample, wherein the nucleic acid complex pair includes a first nucleic acid complex including a first determination region, a first pairing region, and a first detection region; and a second nucleic acid complex including a second determination region, a second paring region, and a second detection region, wherein the first determination region includes at least a partial domain that complementarily binds to a first target nucleic acid sequence, and the second determination region includes at least a partial domain that complementarily binds to a second target nucleic acid sequence, wherein the first pairing region and the second pairing region a domain where they can complementarily hybridize to each other.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: August 17, 2021
    Assignee: MULTILEX, INC.
    Inventors: Yong Tae Kim, Jun Hye Moon
  • Patent number: 11085079
    Abstract: Described herein are methods, compositions and kits directed to amplification of nucleic acids suitable for both next generation sequencing (NGS) and a second round of sequencing as validation, such as Sanger sequencing.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: August 10, 2021
    Assignee: Quest Diagnostics Investments LLC
    Inventors: Heather Sanders, Hai-Rong Li, Feras Hantash, Frederic Waldman
  • Patent number: 11085074
    Abstract: Systems and methods are described for quantifying a target nucleic acid. A sample comprising a target nucleic acid is segregated into a first plurality of the reaction volumes containing at least one target nucleic acid molecule and a second plurality of the reaction volumes containing no target nucleic acid molecules. The reaction volumes are subjected to an amplification assay, wherein the amplification assay is configured to amplify the target nucleic acid. An indicator of amplification is detected or measured in at least some of the plurality of reaction volumes. The target nucleic acid is quantified based on the detection or measurement. After discontinuing the amplification assay, the plurality of reaction volumes may be heated and changes in the indicators of amplification of two or more of the at least some of the reaction volumes may be detected or measured.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: August 10, 2021
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: David N. Keys, Nivedita Sumi Majumdar, Theodore E. Straub
  • Patent number: 11045810
    Abstract: A thermal cycling apparatus having a sample interfacing wall extending from a mounting wall. The sample interfacing wall can accept and apply thermal cycles to samples. An air source can direct an air stream to cool the sample. Another source can direct heated air away from the sample.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: June 29, 2021
    Assignee: Cepheid
    Inventor: Doug Dority
  • Patent number: 11047004
    Abstract: The present disclosure provide systems, compositions, methods, reagents, kits and products for extending a nucleic acid that includes incorporating a nucleotide residue at a terminus of a nucleic acid using a polymerase enzyme and at least one nucleotide, wherein the at least one nucleotide includes a thiophosphate moiety, and wherein the at least one nucleotide is resistant to hydrolysis by phosphatase. In some embodiments, the nucleotide incorporation can be conducted in the presence of a phosphatase. In some embodiments, the nucleotide incorporation can be conducted in the presence of at least on chelation moiety that is configured to bind an orthophosphate moiety.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: June 29, 2021
    Assignee: Life Technologies Corporation
    Inventors: Steven Menchen, Theo Nikiforov, Barnett Rosenblum
  • Patent number: 11041182
    Abstract: The invention relates to a method for synthesizing a selectively labeled RNA, and an apparatus for performing the method. Specific segments or discrete residues within the RNA may be selectively labeled, and different segments may include different labels.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: June 22, 2021
    Assignees: The Government of the United States of America, The Board of Regents of the University of Texas System
    Inventors: Yun-Xing Wang, Yu Liu, Rui Sousa