Patents Examined by Scott M. Getzow
  • Patent number: 11198016
    Abstract: An in-vehicle automated external defibrillator system and a method of controlling the same, for detecting a state of a driver and applying an electric shock to his or her heart in the event of emergency, are disclosed. The method of controlling the in-vehicle automated external defibrillator system includes determining, by a driver state recognition device, a state of a driver through a state determination device, upon determining that the driver is in a cardiac arrest state, determining, by a heart impulse position controller, two current pads among a plurality of current pads disposed in a seat belt, determining, by a heart impulse intensity controller, current to be applied through the two determined current pads, and applying, by the heart impulse intensity controller, the determined current through the two determined current pads.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: December 14, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Sun Kyung Kim
  • Patent number: 11185709
    Abstract: A wearable external defibrillator with a plurality of ECG sensing electrodes and a first defibrillator pad electrode and a second defibrillator pad electrode. The ECG sensing electrodes and the defibrillator pad electrodes are configured for long term wear.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: November 30, 2021
    Assignee: ELEMENT SCIENCE, INC.
    Inventors: Uday N. Kumar, Zachary J. Malchano, Maarten Dinger, Timothy Bahney, Frank Garcia
  • Patent number: 11173298
    Abstract: A device for extending a lead according to some embodiments includes a body, a coil element coupled to the body, the body configured to cover the coil element during use, the coil element comprising an inner lumen sized to receive an outer surface of a lead, the coil element is movable between a first configuration in which the coil element slides over the lead, and a second configuration in which at least some coils grip the outer surface of the lead; and an actuation mechanism operatively coupled to the coil element, the actuation mechanism configured to move the coil element between the first and second configurations.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: November 16, 2021
    Assignee: SPECTRANETICS LLC.
    Inventors: Kenneth P. Grace, Thomas Willard, Thomas Kelby Triffo
  • Patent number: 11160487
    Abstract: A method for analyzing a condition of a heart, comprises receiving a plurality of electric signals, which are acquired by non-invasive measurement on the skin of a person or animal, each signal representing electrical activity in a respective region of the heart of the person or animal; calculating a derivative value of each signal at a plurality of time instances; selecting a plurality of the calculated derivative values of a first signal and determining a first point in time of a first event based on the selected derivative values; selecting a plurality of the calculated derivative values of a second signal and determining a second point in time of a second event, corresponding to the first event, based on the selected derivative values of the second signal, and calculating at least one measure based on a difference of the first point in time and the second point in time.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: November 2, 2021
    Assignee: AALBORG UNIVERSITET
    Inventors: Jacob Melgaard, Johannes Jan Struijk, Claus Graff
  • Patent number: 11147493
    Abstract: A method for non-invasive detection of coronary artery disease (CAD). The method includes acquiring a raw ECG signal from a patient, generating a denoised ECG signal by applying a first wavelet transform on the raw ECG signal, generating an artifact-free ECG signal by applying a second wavelet transform on the denoised ECG signal, generating a filtered ECG signal by applying a band-stop filter on the artifact-free ECG signal, extracting an averaged ECG signal of a plurality of averaged ECG signals from the filtered ECG signal, detecting an ST segment in the averaged ECG signal by applying a delineation algorithm on the averaged ECG signal, detecting an isoelectric line in the averaged ECG signal, determining an existence of CAD in the patient responsive to detecting a CAD detection condition, and determining a non-existence of CAD responsive to not detecting the CAD detection condition.
    Type: Grant
    Filed: November 17, 2019
    Date of Patent: October 19, 2021
    Inventors: Ali Ghaffari, Seyyed Abbas Atyabi, Mohammadmehdi Daevaeiha
  • Patent number: 11147517
    Abstract: The described embodiments relate to systems, methods, and apparatuses for reducing interference of signals transmitted by a physiological measurement device (108, 210, 312), such as an electrocardiogram device. The physiological measurement device can employ filters (308) that use coefficients to reduce time-domain differences between response signals of the physiological measurement device. The coefficients can be derived during a calibration process where each channel of the physiological measurement device is supplied a test signal (202) for identifying the channel with the slowest or most delayed response. Thereafter, when a monitor signal is compiled from response signals filtered using the coefficients, differences in timing between the response signals will not result in distortion of the monitor signal, thereby rendering the monitor signal more accurate for measurement purposes.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: October 19, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Christoph Florian Franck
  • Patent number: 11141588
    Abstract: A method is provided that includes implanting a first electrode in a cerebrospinal fluid (CSF)-filled space of a brain of a subject identified as at risk of or suffering from Alzheimer's disease. One or more second electrodes are implanted superficial to brain parenchyma of the subject, such that the brain parenchyma is spatially disposed between a ventricular system of the brain and the one or more second electrodes. Control circuitry is activated to drive the first and the one or more second electrodes to clear amyloid beta and/or tau protein from the brain parenchyma into the ventricular system by applying current between the first electrode and the one or more second electrodes using an average voltage of less than 1.2 V. Other embodiments are also described.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: October 12, 2021
    Assignee: RAINBOW MEDICAL LTD.
    Inventors: Gideon Fostick, Yossi Gross, Alex Tendler
  • Patent number: 11135430
    Abstract: An apparatus associated with a cochlear implant system used by a patient directs a cochlear implant included within the cochlear implant system and implanted within the patient to generate electrical stimulation current at a predetermined current level. The apparatus further directs the cochlear implant to apply the electrical stimulation current to the patient by way of an electrode coupled with the cochlear implant, and to measure a voltage level associated with the electrode while the electrical stimulation current is applied to the patient by way of the electrode. Based on the predetermined current level and the measured voltage level, the apparatus determines an impedance of the electrode. Based on the determined electrode impedance and in accordance with a predetermined stimulation parameter adjustment constraint, the apparatus automatically adjusts a stimulation parameter associated with the cochlear implant system. Additional apparatuses and corresponding methods are also disclosed.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: October 5, 2021
    Assignee: Advanced Bionics AG
    Inventors: Roger Calixto, Kanthaiah Koka, Anthony J. Spahr, Mary Elizabeth Bush, Mark B. Downing, Leonid M. Litvak, Amy Stein
  • Patent number: 11116976
    Abstract: Methods comprising applying electrical stimulation to patients in conjunction with physical training are described.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: September 14, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Joel W. Burdick, Susan J. Harkema, Jonathan Hodes, Yu-Chong Tai, Mandheerej S. Nandra, Claudia A. Angeli, Thomas Anthony Desautels
  • Patent number: 11116986
    Abstract: The present disclosure involves systems and methods of programming electrical stimulation therapy for a patient. A communications link is established with a pulse generator that is configured to generate electrical stimulation pulses. An intermittent electrical coupling between the pulse generator and a diagnostic tool is simulated. This simulation is performed by instructing, for a plurality of cycles, the pulse generator to automatically turn on and off the generation of electrical stimulation pulses. Each cycle includes a first time period and a second time period following the first time period. The simulating includes: instructing the pulse generator to generate the electrical stimulation pulses during the first time period; and instructing the pulse generator to stop generating the electrical stimulation pulses during the second time period.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: September 14, 2021
    Assignee: CIRTEC MEDICAL CORPORATION
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Patent number: 11110281
    Abstract: A system and method for communication between an IMD and an external reader includes bringing a portion of a patient's body into contact with a device-body contact surface of an external reader. The reader transmits a first transdermal carrier wave from the contact surface into the patient's body, where the first carrier wave includes a request for communication with the IMD. The transdermal carrier waves are electrical conductive waves, optical waves, or acoustic waves. Upon detection of the first carrier wave, the IMD transmits a second transdermal carrier wave including a request for an access key from the reader and the reader replies by transmitting a third transdermal carrier wave including the access key back to the IMD. If the access key is valid, the IMD transmits information by radio frequency (RF) in an RF communication mode or a fourth transdermal carrier wave including data from the IMD.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: September 7, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bin Mi, Jonathan Bennett Shute, Kenneth P. Hoyme, Grace Ann Wiechman, Michael Sheehan Seeberger, Andrew Bomett
  • Patent number: 11097107
    Abstract: An external medical device includes a user interface; at least one therapy electrode configured to be disposed on a patient; and a processor operatively coupled to the at least one therapy electrode, the processor configured to cause a treatment manager to detect a cardiac condition of the patient; receive, via the user interface, discomfort information descriptive of the discomfort experienced by the patient; responsive to determining from the discomfort information that the patient is unconscious, execute at least one pacing routine, the at least one pacing routine being associated with the cardiac condition; and responsive to determining from the discomfort information that the patient is conscious, adjust at least one characteristic of the at least one pacing routine.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: August 24, 2021
    Assignee: ZOLL MEDICAL CORPORATION
    Inventors: Jason T. Whiting, Thomas E. Kaib, Rachel H. Carlson, Gregory R. Frank, Gary A. Freeman
  • Patent number: 11083479
    Abstract: A hand-held electromechanical surgical device is configured to selectively connect with a surgical accessory. The surgical device includes a power-pack, an outer shell housing, and a gasket. The power-pack is configured to selectively control a surgical accessory. The outer shell housing includes a distal half-section and a proximal half-section, the distal half-section and the proximal half-section together defining a cavity configured to selectively encase substantially the entire power-pack therein. The gasket is located between the distal half-section and the proximal half-section of the outer shell housing. The gasket is configured to create a seal between the distal half-section and the proximal half-section and to provide a sterile barrier between the power-pack and an outside environment outside the outer shell housing.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: August 10, 2021
    Assignee: Covidien LP
    Inventors: John Beardsley, Matthew Chowaniec, Russell Pribanic, Paul Rinaldi
  • Patent number: 11077310
    Abstract: In embodiments, a wearable cardioverter defibrillator (WCD) system includes electrodes that render an ECG signal of the patient, and a processor that receives ECG data are derived from the rendered ECG signal. The processor may filter the received ECG data with a matched difference filter to detect QRS complexes, and compute a heart rate from the detected QRS complexes. The matched difference filter itself can have coefficient values associated with a baseline QRS complex, which improves detection.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: August 3, 2021
    Assignee: West Affum Holdings Corp.
    Inventor: Joseph L. Sullivan
  • Patent number: 11075009
    Abstract: A system and method for analyzing a subject health condition based on an input signal comprising subject heartbeat data recorded from the subject over a time period. Using the subject heartbeat data, a sympathetic activity index value in a sympathetic activity index (SAI) determined, where the SAI represents an influence, on a mean heart rate of the subject, of sympathetic nerve activity (SNA) of the subject.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: July 27, 2021
    Assignee: The General Hospital Corporation
    Inventors: Riccardo Barbieri, Luca Citi, Gaetano Valenza
  • Patent number: 11058864
    Abstract: Disclosed is a device for providing resuscitation or suspended state through redistribution of cardiac output to increase supply to the brain and heart for a patient. The device includes an electrically controllable redistribution component attachable to the patient to provide redistribution of the cardiac output to increase supply to the brain and heart. The redistribution component, following a predefined reaction pattern based on an electrical signal, and computer means configured to: receive a patient data which identifies physiological and/or anatomical characteristics of the patent; and provide the electrical signal for the redistribution component based on the patient data or a standard response. The device may provide mechanisms to protect the aorta and the remaining anatomy of the patient from inadvertent damage caused by the disclosed device in any usage scenario of either correct intended usage or unintended usage. Also disclosed is a method for providing resuscitation or suspended state.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: July 13, 2021
    Assignee: Neurescue ApS
    Inventor: Habib Frost
  • Patent number: 11051889
    Abstract: A system for differential recording connectable to an electrical lead with at least two electrodes, including: the lead having a distal end; at least one amplifier electrically connectable to the at least two electrodes, wherein the at least one amplifier subtracts a signal recorded by one of the at least two electrodes, from a signal recorded by the other one of the at least two electrodes to generate a differential signal; a memory configured for storing said differential signal and reference indications of electrical signals associated with neural tissue; a processing circuitry for detection of an anatomical position, wherein the processing circuitry calculates an anatomical position of the electrical lead based on processing of the differential signal and the reference indications of electrical signals associated with the neural tissue.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: July 6, 2021
    Assignee: Alpha Omega Engineering Ltd.
    Inventors: Hagai Bergman, Omer Naor, Jubran Elfar, Imad Younis, Adi Balan, Zvi Israel, Dan Valsky, Odeya Marmor, Renana Eitan, John Rizik, Majd Sleem, Paul McSherry, Steven Scott, Benjamin Matter
  • Patent number: 11051785
    Abstract: A heartbeat detection device includes a bone conduction microphone that converts, into a signal, displacement on the body surface of a user in a thickness direction of the body of the user, and an extractor that extracts a first frequency component and a second frequency component which are included in the signal. The first frequency component is based on audio information of the user, and the second frequency component is based on heartbeat information of the user. The heartbeat detection device is capable of estimating the physical and psychological state of the user based on the heartbeat information by extracting both the audio information and the heartbeat information, from a signal that has been output by the bone conduction microphone.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: July 6, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yusuke Matsumoto, Suguru Nakao, Hiroshi Kunimoto
  • Patent number: 11033218
    Abstract: A system and methods for performing neurophysiologic assessments during surgery, such as assessing the health of the spinal cord via at least one of MEP and SSEP monitoring and assessing bone integrity, nerve proximity, neuromuscular pathway, and nerve pathology during spine surgery.
    Type: Grant
    Filed: June 22, 2019
    Date of Patent: June 15, 2021
    Assignee: NuVasive, Inc.
    Inventors: James E. Gharib, Allen Farquhar, Doug Layman
  • Patent number: 11027126
    Abstract: Disclosed herein are systems and methods for nerve conduction block. The systems and methods can utilize at least one renewable electrode. The methods can include delivering a first direct current with a first polarity to an electrode proximate nervous tissue sufficient to block conduction in the nervous tissue. Delivering the first direct current can place the nervous tissue in a hypersuppressed state at least partially preventing conduction of the nervous tissue after cessation of delivering of the first direct current. The nervous tissue can be maintained in the hypersuppressed state for a desired period, such as at least about 1 minute.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: June 8, 2021
    Assignee: Presidio Medical, Inc.
    Inventors: Douglas Michael Ackermann, Kenneth Wu