Patents Examined by Sean C Barron
  • Patent number: 10041045
    Abstract: A bed of microbeads is used as a foundation for reconstructing a three-dimensional osteocyte network by culturing osteocytes within the bed. The osteocytes are cultured such that they form a network among the microbeads that is capable of simulating the osteocyte network of natural bone. The osteocytes are cultured in a microfluidic device adapted for the purpose.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: August 7, 2018
    Assignees: HACKENSACK UNIVERSITY MEDICAL CENTER, THE TRUSTEES OF THE STEVENS INSTITUTE OF TECHNOLOGY
    Inventors: Woo Young Lee, Yexin Gu, Qiaoling Sun, Wenting Zhang, Jenny Zilberberg
  • Patent number: 10034963
    Abstract: Devices and methods for transplanting cells in a host body are described. The cell comprises a porous scaffold that allows ingrowth of vascular and connective tissues, a plug or plug system configured for placement within the porous scaffold, and a seal configured to enclose a proximal opening in the porous scaffold. The device may further comprise a cell delivery device for delivering cells into the porous scaffold. The method of cell transplantation comprises a two step process. The device is incubated in the host body to form a vascularized collagen matrix around a plug positioned within the porous scaffold. The plug is then retracted from the porous scaffold, and cells are delivered into the vascularized space created within the porous scaffold.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: July 31, 2018
    Assignee: Sernova Corporation
    Inventors: Craig Hasilo, Justin Leushner, Daniel Nicholas Haworth, Simon Shohet, Philip Michael Toleikis, Delfina Maria Mazzuca Siroen
  • Patent number: 10031145
    Abstract: Disclosed is a method for quantifying HDL2 cholesterol in a test sample without requiring laborious operations. The method for quantifying cholesterol comprises allowing phospholipase to act on HDL to quantify cholesterol. Also disclosed is a method comprising: a first step of transferring cholesterols other than high-density lipoproteins in a test sample to the outside of the reaction system; and a second step of quantifying high-density lipoprotein 2 cholesterol among the high-density lipoproteins remaining in the reaction system; wherein, by performing the second step by the above method, high-density lipoprotein 2 cholesterol in the test sample can be quantified.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: July 24, 2018
    Assignee: Denka Seiken Co., Ltd.
    Inventors: Maiko Higuchi, Yasuki Itoh
  • Patent number: 10023842
    Abstract: This disclosure relates to endothelial or endothelial like cells cultured from fibroblasts exposed to transcription factor ETV2. In certain embodiments, the disclosure relates to methods of producing endothelial or endothelial like cells comprising exposing fibroblasts with ETV2 under conditions such that the fibroblasts are modified to form a pool of cells expressing increased levels of endothelium surface markers compared to the fibroblasts. In certain embodiments, the disclosure relates to using endothelial like cells reported herein for the treatment of vascular, cardiac, and wound healing indications.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: July 17, 2018
    Assignees: Emory University, The Board of Trustees of the University of Illinois
    Inventors: Young-Sup Yoon, JiWoong Han, Sang Ho Lee, Changwon Park
  • Patent number: 10006842
    Abstract: Provided is a simple method for producing a cell concentrate (other than human blood) in a short time with neither loss of cells nor an excessive burden on cells. Included is a method for producing a cell concentrate using an inside-out filtration system for processing a cell suspension, the system including: a cell suspension inlet port; a filtrate outlet port; a cell suspension outlet port; and hollow fiber separation membranes provided between the cell suspension inlet port and the cell suspension outlet port, wherein the membranes have a total cross-sectional area of 0.5-1.5 cm2, the membranes have an inside membrane area of 0.2 m2 or less, the suspension is flowed inside the membranes at a linear velocity of 500-1200 cm/min, and the quotient of the division of the initial filtrate flow rate from the filtrate outlet port by the flow rate into the cell suspension inlet port is 0.4-0.7.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: June 26, 2018
    Assignee: KANEKA CORPORATION
    Inventor: Shuhei Taniguchi
  • Patent number: 9987222
    Abstract: The present invention relates to a method for the administration of a probiotic composition to a vaginal cavity and to compositions, devices and kits for use in this method.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: June 5, 2018
    Assignee: BIOSOMA B.V.
    Inventor: Floris Koumans
  • Patent number: 9982289
    Abstract: A test strip or electrochemical sensor for measuring the amount of an analyte in a biological fluid, e.g. the glucose content of whole blood, includes a size self-limiting reagent formulation employing an enzyme system for reaction with the analyte, the reactive system mixed into a water-soluble swellable polymer matrix containing small water-insoluble particles having a nominal size of about 0.05 to 20 ?m, preferably about 1 to 10 ?m. The weight ratio of the water-insoluble particles to the water-soluble swellable polymer matrix is about 1/2 to 2/1. The reagent formulation is deposited onto a non-porous substrate to form a thin layer about 6-16 ?m thick, providing a rapid and stable response to application of a sample, while being insensitive to the amount of the sample.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: May 29, 2018
    Assignee: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventor: Karen L. Marfurt
  • Patent number: 9976158
    Abstract: A process and apparatus is provided which are effective for improving CO mass transfer. The process includes introducing syngas into a reactor vessel through a gas sparger located below a liquid level in the reactor vessel. The syngas being introduced at a flow rate effective for maintaining a pressure inside of the reactor vessel of at least about 1 psig. An agitation energy of about 0.01 to about 12 kWatts/m3 medium is provided. The process is effective for providing a volumetric CO mass transfer coefficient of about 100 to about 1500 per hour.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: May 22, 2018
    Inventors: Peter Simpson Bell, Ching-Whan Ko
  • Patent number: 9976120
    Abstract: A scaffold for neurons consists of tubes sized to promote neural growth through the tubes. The tubes may be fixed to a substrate providing electrical or optical paths out from the interior of the tubes from sensors or stimulating probes at one or more locations along the length of the coaxial axons. Steering electrodes at spaces between tubes may be used to selectively promote the growth of interconnections of different axons in a one, two, or three-dimensional fashion.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: May 22, 2018
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Robert H. Blick, Justin Williams, Minrui Yu, Yu Huang
  • Patent number: 9963724
    Abstract: Provided is a method for producing 5-aminolevulinic acid or a salt thereof at a high yield using 5-aminolevulinic acid-producing microorganisms. The method for producing 5-aminolevulinic acid or a salt thereof comprises culturing 5-aminolevulinic acid-producing microorganisms in a medium comprising one or more components selected from the group consisting of L-arginine, glutamic acid, and a salt thereof. The content of glutamic acid or the salt thereof is from 42 to 100 mM in the medium as the glutamic acid.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: May 8, 2018
    Assignee: neo ALA Co., Ltd.
    Inventors: Masaru Saito, Taishi Yamamoto, Haruki Kawano
  • Patent number: 9958435
    Abstract: A process is disclosed for detecting cells in a liquid sample, which includes: i) filtration of the liquid sample through a porous membrane which is suitable for retaining detectable cells, where at least one subregion of a support is configured as transparent supporting body and the membrane is arranged over its area on the transparent supporting body in such a way that detectable cells are retained on at least part of the surface of the membrane and that at least part of the sample liquid passes through the membrane, ii) application of a liquid optical medium which has essentially the same refractive index as the supporting body, and iii) optical measurement of at least a subarea of the membrane in order to detect detectable cells.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: May 1, 2018
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Joachim Bangert, Katja Friedrich, Walter Gumbrecht, Karsten Hiltawsky, Peter Paulicka, Manfred Stanzel
  • Patent number: 9951313
    Abstract: The technology described herein is directed to methods and devices that can be used to induce functional organ structures to form within an implantation device by implanting it in vivo within the body of a living animal, and allowing cells and tissues to impregnate the implantation device and establish normal microenvironmental architecture and tissue-tissue interfaces. Then the contained cells and tissues can be surgically removed intact and either transplanted into another animal or maintained ex vivo by perfusing it through one or more of the fluid channels with medium and/or gases necessary for cell survival.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 24, 2018
    Assignees: President and Fellows of Harvard College, Children's Medical Center Corporation
    Inventors: Donald E. Ingber, Yusuke Torisawa, Geraldine Hamilton, Akiko Mammoto, Tadanori Mammoto, Catherine Spina
  • Patent number: 9949473
    Abstract: A device and kit and method for controlling coagulation in a blood sample. The coagulation controlling agent is at least one of citrate, a protamine salt, its homologs and derivatives, benzamidine, or para-aminobenzamidine. Additives such as water soluble polymers and sugars are also contemplated. The device and kit comprise a container that contains an effective amount of thrombin and a coagulation controlling agent. The method combines thrombin and a coagulation controlling agent to stabilize thrombin or accelerate its activity in a blood sample.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 24, 2018
    Assignee: Becton, Dickinson and Company
    Inventors: Dougald Monroe, Shabazz Novarra, Randal Alan Hoke, Paul F. Holmes, Justyna Dudaronek
  • Patent number: 9950043
    Abstract: Modulation of the ADAMTS1 signaling pathway alters the commitment of progenitor cells to a muscle fate; and increases muscle mass.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: April 24, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Brian Jay Feldman
  • Patent number: 9944897
    Abstract: The present invention relates to adenovirus E4ORF1 gene and to endothelial cells engineered to express the E4ORF1 gene. The present invention also relates to uses of the E4ORF1 gene, and cells expressing the E4ORF1 gene, and to compositions comprising the E4ORF1 gene, or comprising cells expressing the E4ORF1 gene.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: April 17, 2018
    Assignees: Cornell Research Foundation, Inc., Sloan-Kettering Institute for Cancer Research
    Inventors: Shahin Rafii, Fan Zhang, Marco Seandel
  • Patent number: 9943546
    Abstract: The invention relates to a viral-safe platelet extract, to its preparation and use. The extract comprises a mixture of biologically active platelet derived factors. Advantageously, the extract comprises a balanced proportion of the factors and is non-clottable.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: April 17, 2018
    Assignee: Omrix Biopharmaceuticals Ltd.
    Inventors: Lior Weissman, Nina Raver-Shapira, Israel Nur, Oleg Belyaev
  • Patent number: 9932275
    Abstract: The present invention relates to a process for treating organic waste, which comprises the step of contacting an organic waste with one or more microorganisms from at least three of the following microorganism species: Bacillus sp. microorganisms, Pseudomonas sp. microorganisms, Bifidobacterium sp. microorganisms and Lactobacillus sp. microorganisms, the contacting being undertaken under conditions to at least partly convert the organic waste to organic fertilizer.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: April 3, 2018
    Assignee: Biomax Holdings PTE LTD
    Inventors: Chum Mok Puah, Eng Tong Sim, Siok Lui Chua
  • Patent number: 9920295
    Abstract: The present invention relates to a bioreactor apparatus, and methods of use, for the isolation of rare blood cells, including hematopoietic stem cells and megakaryocytes. The apparatus includes a soft substrate and an anti-contractility agent, thereby providing a soft microenvironment to cultured cells. The apparatus of the invention is permissive for the survival of non-dividing cells while dividing cells are eliminated. This unique property allows for the simple isolation of rare blood cells without the use of costly equipment and antibodies.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 20, 2018
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dennis E. Discher, Jae-Won Shin
  • Patent number: 9908912
    Abstract: A selective agent comprising a triclosan derivative for use in selective inhibition of non-target cells in a mixed population of target and non-target cells. Preferably the triclosan derivative is a glycoside derivative, more preferably a pyranoside derivative. Suitably a selective medium comprising said selective agent and methods of culturing cells using the selective agent are provided.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: March 6, 2018
    Assignee: Oxoid Limited
    Inventors: Richard Bovill, Gemma Howse
  • Patent number: 9868933
    Abstract: The present invention relates to a cell culturing method and cell culturing apparatus and kit for use therewith. The method includes applying cells on a porous polyimide film and culturing. One embodiment includes a process for sowing cells on the surface of the film. Another embodiment includes a process for placing a cell suspension on the dried surface of the film and leaving the film undisturbed, moving the film to promote liquid efflux, or stimulating a portion of the surface to entangle the cell suspension into the film, and then retaining the cells in suspension inside the film while allowing moisture to flow out. Another embodiment includes a process for moistening one or both surfaces of the film with a cell culture solution or sterilized liquid, loading a cell suspension on the moistened film, retaining the cells in suspension inside the film, and allowing moisture to flow out.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: January 16, 2018
    Assignee: UBE INDUSTRIES, LTD.
    Inventors: Masahiko Hagihara, Tetsuo Kawaguchi, Kousuke Baba, Motohisa Shimizu