Patents Examined by Sean E Vincent
  • Patent number: 6708526
    Abstract: A heat-resistant pipe is arranged so as to traverse below a glass ribbon in a float bath of molten tin, and bubbles emanate from the heat-resistant pipe, thereby making the bottom surface (which is in contact with the tin) uneven. Alternatively, the bottom surface is made uneven with a roller for lifting the glass ribbon out of the float bath into an annealing furnace. In addition to these operations for making the glass surface uneven, a film can be applied to the top face of the glass ribbon (i.e. the surface that is not in contact with the tin) by CVD, supplying a mixed gas of raw material from coaters. Thus, the invention makes it possible to manufacture a glass sheet having an uneven surface efficiently, using a technique for processing the surface of a glass sheet that is suitable for a production line for float glass.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: March 23, 2004
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Akihiro Hishinuma, Toshiaki Hashimoto
  • Patent number: 6679085
    Abstract: While avoiding the disadvantages of the screen printing technique employed until now, the invention provides a shaping tool (1) with a structured surface for creating structures on glass (2) which, in an economical way, makes it possible to form high-precision microstructures by local heating of the region of glass to be structured. The shaping tool (1) has a rolling cylinder (3) including a metal hollow cylinder (7) and a shaping sheet (8) secured in a surface contact to it, as well as a continuous shaft (5) for continuously driving the rolling cylinder (3) via drivers (4) coupled to the hollow cylinder (7). Between the shaft (5) and the hollow cylinder (7), an electric heater (6) for targeted local heating of the glass during structuring is disposed in an electrically insulated fashion. The electric heater (6) is advantageously thermally insulated from the shaft (5) with a ceramic cylinder (14).
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: January 20, 2004
    Assignee: Schott Glas
    Inventors: Rudolf Singer, Joachim Disam, Christiane Baum
  • Patent number: 6588232
    Abstract: A film forming device in a substrate manufacturing apparatus a stage section on which a cassette storing a plurality of glass substrates is mounted. A treatment section for subjecting the substrate to a predetermined treatment is arranged to oppose the stage section. A washing section for washing the substrate is arranged near the stage section and the treatment section and deviated from a space between the stage section and the treatment section in a second direction crossing a first direction passing through the stage section and the treatment section. A transfer robot is arranged between the stage section and the treatment section. The transfer robot transfers the substrate between the stage section, treatment section, and washing section and loads the substrate, washed in the washing section, directly into the treatment section.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: July 8, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Suzuki, Noriyuki Hirata, Masatoshi Shimizu, Takuo Higashijima, Hiroaki Takahashi, Yoshiaki Komatsubara
  • Patent number: 6376401
    Abstract: A synthetic silica glass having a high transmittance for vacuum ultraviolet rays, for example F2 excimer laser beam with a wavelength of 157 nm, a high uniformity and a high durability and useful for ultraviolet ray-transparent optical glass materials is produced from a high-purity silicon compound, for example silicon tetrachloride, by heat treating an accumulated porous silica material at a temperature not high enough to convert the porous silica material to a transparent silica glass in an inert gas atmosphere for a time sufficient to cause the OH groups to be condensed and removed from the glass, and exhibits substantially no content of impurities other than OH group a difference between highest and lowest fictional temperatures of 50° C.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: April 23, 2002
    Assignees: Tosoh Corporation, Nippon Silica Glass Co., Ltd., Yamaguchi Nippon Silica Glass Co., Ltd.
    Inventors: Shinichi Kondo, Takayuki Nakamura, Kazuhiko Fukuda, Naoyoshi Kamisugi, Nobu Kuzuu, Yoshinao Ihara, Hidetoshi Wakamatsu
  • Patent number: 6332338
    Abstract: Disclosed is a process for producing a glass substrate for an information recording medium by press-shaping a molten glass which gives a glass containing 0.1 to 30 mol % of TiO2, 1 to 45 mol % of CaO, 5 to 40 mol % of total of MgO and the above CaO, 3 to 30 mol % of total of Na2O and Li2O, 0 to 15 mol % of Al2O3 and 35 to 65 mol % of SiO2 and having properties of a liquidus temperature of 1,360° C. or lower and a viscosity of at least 10 poise in a shaping-allowable temperature range, or by preparing a preform formed of a glass which contains 0.1 to 30 mol % of TiO2, 1 to 45 mol % of CaO, 5 to 40 mol % of total of MgO and the above CaO, 3 to 30 mol % of total of Na2O and Li2O, 0 to 15 mol % of Al2O3 and 35 to 65 mol % of SiO2 and has properties of a liquidus temperature of 1,360° C. or lower and shaping the preform in the form of a disc by a re-heat pressing method.
    Type: Grant
    Filed: April 20, 1999
    Date of Patent: December 25, 2001
    Assignee: Hoya Corporation
    Inventors: Kazuaki Hashimoto, Xuelu Zou
  • Patent number: 6244524
    Abstract: In a combustion process, especially one used for melting glass, the delivery of fuel is ensured by an apparatus having at least one burner (5) which is equipped with at least one injector (1) that includes a liquid fuel delivery tube (2) which has at least one internal wall (25) and an injected fluid delivery tube (3) arranged concentrically with respect to the liquid fuel delivery tube. Immediately before injecting the liquid fuel from its delivery tube, one puts it in the shape of a hollow jet basically assuming the shape of the internal wall. This has application for the reduction of NOx in a glass-making oven.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: June 12, 2001
    Assignee: Saint-Gobain Glass France
    Inventors: Guy Tackels, Patrick Rouchy, Joseph Vernaz
  • Patent number: 6131416
    Abstract: A method for high velocity coating optical fibers includes passing a fiber with diameter l at velocity V through a coating container to which liquid coating material with viscosity .mu. is supplied under pressure p. Unwanted bubble formation in the coating is prevented by adjusting one or more of the parameters V, l, .mu., and p using the relationship:S=pl/.mu.Vwhere S is a constant characteristic of the coating container/die structure.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: October 17, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Valerie Jeanne Kuck, Peter Gerald Simpkins
  • Patent number: 6128926
    Abstract: A non-phase separable glass material for fabricating a GRIN lens comprises 5-20 mole % boron oxide and ratio R of network modifiers in mole % to the network former boron oxide in mole % is in the range of about 1-1.5. The melted preform of such glass material is extruded through an opening to form a glass rod where the extrusion process eliminates bubbles that may be present in the preform. Neodymium oxide may be added in the frit material for forming the preform to reduce friction forces in the extrusion process and reduces the stress in the glass rod. Centerless grinding may be performed to control the diameter and roughness of the surface of the rod to control the diffusion parameters during the subsequent ion-exchange.
    Type: Grant
    Filed: March 15, 1999
    Date of Patent: October 10, 2000
    Assignee: Dicon Fiberoptics, Inc.
    Inventors: Udayan Senapati, Ho-Shang Lee
  • Patent number: 6122936
    Abstract: An apparatus for integrating steps of a process for interconnecting optical fibers. The apparatus contains a planar surface having a plurality of openings. A plurality of optical fiber processing modules are suspended within the plurality of openings, with each of the modules configured to execute a different step of the optical fiber interconnection process. A material transfer mechanism, such as a robot arm, is arranged above the planar surface and is connected to a controller. The apparatus can incorporate an optical fiber precision handling tool, which holds, transports and aligns the fibers to be processed. The robot arm is operative to pick-up and move the optical fiber precision handling tool between the plurality of modules. This allows the optical fibers to be transferred through a series of process steps without having to re-secure or re-orient the fibers between the steps.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: September 26, 2000
    Assignee: Ciena Corporation
    Inventors: Andrei Csipkes, William Keith Chandler, Waqar Mahmood
  • Patent number: 6120646
    Abstract: A feeding system for feeding comminuted cellulose containing material and liquid to a continuously operating treatment vessel. The feeding system comprises a chute, operating at a first pressure, a high pressure feeder sluices the material to a second pressure, that is higher than the first pressure, for further conveyance to the treatment vessel. The high pressure feeder also receives a return liquid flow from the treatment vessel at the second pressure and recirculates a recirculation flow to the chute. The high pressure feeder is in fluid communications, regarding both the liquid and the material, with the recirculation flow when any of the pockets of the high pressure feeder is in a location which corresponds to an outlet for the recirculation flow.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: September 19, 2000
    Assignee: Kvaerner Pulping AB
    Inventors: Vidar Martin Snekkenes, Bo Gosta Svaneg.ang.rd, Bror Lennart Gustavsson
  • Patent number: 6112553
    Abstract: The invention relates to a method of making a device for stabilizing a Bragg grating relative to temperature, the device being of the type comprising two materials having coefficients of thermal expansion that are far apart, the method comprising the steps consisting in:supplying a glass and a metal suitable for fixing to each other by a chemical reaction between them in an appropriate range of temperatures; andputting the glass and the metal into contact with each other at a temperature lying in said appropriate temperature range so as to fix them together.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: September 5, 2000
    Assignee: France Telecom
    Inventors: Hubert Poignant, Valerie Fleury, Joel Le Mellot