Patents Examined by Shahed Ahmed
  • Patent number: 11894269
    Abstract: Some embodiments include an integrated assembly having a stack of alternating first and second levels. The first levels contain conductive material and the second levels contain insulative material. At least some of the first and second levels are configured as steps. Each of the steps has one of the second levels over an associated one of the first levels. A layer is over the steps and is spaced from the stack by an intervening insulative region. Insulative material is over the layer. Conductive interconnects extend through the insulative material, through the layer, through the intervening insulative region and to the conductive material within the first levels of the steps. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: February 6, 2024
    Inventors: John D. Hopkins, Lifang Xu, Nancy M. Lomeli
  • Patent number: 11894305
    Abstract: A microelectronic device includes a stack structure, a staircase structure, conductive pad structures, and conductive contact structures. The stack structure includes vertically alternating conductive structures and insulating structures arranged in tiers. Each of the tiers individually includes one of the conductive structures and one of the insulating structures. The staircase structure has steps made up of edges of at least some of the tiers of the stack structure. The conductive pad structures are on the steps of the staircase structure and include beta phase tungsten. The conductive contact structures are on the conductive pad structures. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: February 6, 2024
    Inventors: Jordan D. Greenlee, John D. Hopkins, Rita J. Klein, Everett A. McTeer, Lifang Xu, Daniel Billingsley, Collin Howder
  • Patent number: 11895837
    Abstract: A semiconductor device includes a substrate including a memory cell region and a connection region, a plurality of gate electrodes stacked on the substrate, a channel structure penetrating the plurality of gate electrodes and including a channel layer extending in a vertical direction perpendicular to an upper surface of the substrate in the memory cell region, a dummy channel structure penetrating the plurality of gate electrodes and including a dummy channel layer extending in the vertical direction in the connection region, a first semiconductor layer disposed between the substrate and a lowermost one of the plurality of gate electrodes and surrounding the channel structure in the memory cell region, and an insulating separation structure disposed between the substrate and the lowermost one of the plurality of gate electrodes and surrounding the dummy channel layer.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: February 6, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Janggn Yun, Jaeduk Lee
  • Patent number: 11894455
    Abstract: A precursor for a vertical semiconductor device is provided with a substrate, a drift region over the substrate, and an upper precursor region over the drift region. The top surface of the precursor is substantially planar, and the substrate and the drift region are doped with a first dopant of a first polarity. In a first embodiment, a series of implants with a second dopant is provided in the upper precursor region via the top surface to form each of at least two gate regions such that each implant of the series of implants is provided at a different depth below the top surface. In a second embodiment, a series of implants with the first dopant is provided in the upper precursor region via the top surface to form a channel region that has at least a portion between two gate regions.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: February 6, 2024
    Assignee: Wolfspeed, Inc.
    Inventors: Daniel Jenner Lichtenwalner, Sei-Hyung Ryu, Arman Ur Rashid
  • Patent number: 11894265
    Abstract: A method of forming a top via is provided. The method includes forming a sacrificial trench layer and conductive trench plug in an interlayer dielectric (ILD) layer on a conductive line. The method further includes forming a cover layer on the ILD layer, sacrificial trench layer, and conductive trench plug, and forming a sacrificial channel layer and a conductive channel plug on the conductive trench plug. The method further includes removing the cover layer and the ILD layer to expose the sacrificial trench layer and the sacrificial channel layer. The method further includes removing the sacrificial trench layer and the sacrificial channel layer, and forming a barrier layer on the conductive channel plug and conductive trench plug.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: February 6, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Brent Anderson, Kisik Choi, Nicholas Anthony Lanzillo, Christopher J. Penny, Robert Robison
  • Patent number: 11894263
    Abstract: Semiconductor structures and methods are provided. A semiconductor structure according to the present disclosure includes a first metal line extending along a first direction, a second metal line lengthwise aligned with and spaced apart from the first metal line, and a third metal line extending along the first direction. The third metal line includes a branch extending along a second direction perpendicular to the first direction and the branch partially extends between the first metal line and the second metal line.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Hsien Wu, Chung-Yi Lin, Yen-Sen Wang
  • Patent number: 11889698
    Abstract: A semiconductor storage device includes first wiring layers stacked along a first direction, a first pillar including a first semiconductor layer and extending along the first direction through the first wiring layers, a second wiring layer disposed above the first pillar in the first direction and extending along a second direction perpendicular to the first direction, a semiconductor-containing layer including a first portion disposed on an upper end of the first pillar in the first direction, a second portion contacting the first portion and formed along the second wiring layer, and a third portion contacting an upper end of the second portion and extending along a third direction perpendicular to the first direction and crossing the second direction, and a first insulating layer between each of the first and second portions of the semiconductor-containing layer and the second wiring layer. An upper surface of the third portion contains a metal.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: January 30, 2024
    Assignee: Kioxia Corporation
    Inventors: Yasuhito Yoshimizu, Hiroshi Nakaki, Kazuaki Nakajima
  • Patent number: 11888090
    Abstract: Provided is a semiconductor light-emitting element having improved light emission output. The semiconductor light-emitting element includes a light-emitting layer having a layered structure in which a first III-V compound semiconductor layer and a second III-V compound semiconductor layer having different composition ratios are repeatedly stacked. The first and second III-V compound semiconductor layers each contain three or more types of elements that are selected from Al, Ga, and In and from As, Sb, and P. The composition wavelength difference between the composition wavelength of the first III-V compound semiconductor layer and the composition wavelength of the second III-V compound semiconductor layer is 50 nm or less. The ratio of the lattice constant difference between the lattice constant of the first III-V compound semiconductor layer and the lattice constant of the second III-V compound semiconductor layer is not less than 0.05% and not more than 0.60%.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: January 30, 2024
    Assignee: DOWA Electronics Materials Co., Ltd.
    Inventors: Yuta Koshika, Yoshitaka Kadowaki
  • Patent number: 11881471
    Abstract: A semiconductor device and a method of manufacturing a semiconductor device. For example, various aspects of this disclosure provide a semiconductor device having an ultra-thin substrate, and a method of manufacturing a semiconductor device having an ultra-thin substrate. As a non-limiting example, a substrate structure comprising a carrier, an adhesive layer formed on the carrier, and an ultra-thin substrate formed on the adhesive layer may be received and/or formed, components may then be mounted to the ultra-thin substrate and encapsulated, and the carrier and adhesive layer may then be removed.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: January 23, 2024
    Assignee: AMKOR TECHNOLOGY SINGAPORE HOLDING PTE. LTD.
    Inventor: Ronald Huemoeller
  • Patent number: 11880744
    Abstract: A method for monitoring the state of a qubit device comprising a chiral nanocrystal includes measuring a voltage, a current, or a magnetic field of the nanocrystal; assigning the nanocrystal a superposition state if the measured voltage, current, or magnetic field is less than a superposition threshold; and assigning a base state value of the nanocrystal if the measured voltage is greater than a base state threshold. The measured voltage, current, or magnetic field corresponds to a clockwise or counter clockwise flow of electrons around the nanocrystal.
    Type: Grant
    Filed: January 16, 2023
    Date of Patent: January 23, 2024
    Inventors: David L. Carroll, Alton J. Reich, Roberto Di Salvo
  • Patent number: 11881504
    Abstract: A semiconductor device according to the present disclosure includes: a first conductivity-type silicon substrate including a cell part and a termination part surrounding the cell part in plan view; a first conductivity-type emitter layer provided on a front surface of the silicon substrate in the cell part; a second conductivity-type collector layer provided on a back surface of the silicon substrate in the cell part; a first conductivity-type drift layer provided between the emitter layer and the collector layer; a trench gate provided to reach the drift layer from a front surface of the emitter layer; and a second conductivity-type well layer provided on the front surface of the silicon substrate in the termination part. Vacancies included in a crystal defect in the cell part are less than vacancies included in a crystal defect in the termination part.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: January 23, 2024
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenji Suzuki, Yuki Haraguchi, Haruhiko Minamitake, Taiki Hoshi, Takuya Yoshida, Hidenori Koketsu, Yusuke Miyata, Akira Kiyoi
  • Patent number: 11882699
    Abstract: A silicon-oxide-nitride-oxide-silicon (SONOS) memory cell for FinFET includes a fin, a control gate and a selective metal gate. The fin is on a top surface of a substrate, wherein the fin has two sidewalls and a top surface, and the fin includes a memory region and a logic region. The control gate is disposed over the fin of the memory region and covers the two sidewalls and the top surface of the fin, wherein the control gate includes a charge trapping layer and a control electrode, wherein the charge trapping layer is sandwiched by the fin and the control electrode. The selective metal gate is disposed over the fin adjacent to the control gate and covers the two sidewalls and the top surface of the fin. The present invention also provides a method of forming said silicon-oxide-nitride-oxide-silicon (SONOS) memory cell.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: January 23, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Liang Yi, Zhiguo Li, Chi Ren
  • Patent number: 11882694
    Abstract: A semiconductor device includes: an inter-layer dielectric layer over a substrate including a cell region, a first peripheral region, and a second peripheral region; a capping layer over the inter-layer dielectric layer; a capacitor capped by the inter-layer dielectric layer in the cell region; a contact plug penetrating the inter-layer dielectric layer in the first peripheral region; a metal interconnection formed over the contact plug through the capping layer; and a through electrode penetrating the capping layer and the inter-layer dielectric layer and extending into the substrate in the second peripheral region.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: January 23, 2024
    Assignee: SK hynix Inc.
    Inventors: Sung Soo Kim, Woon Seob Lee
  • Patent number: 11882732
    Abstract: A display device includes a plurality of subpixels each including a transmission portion and a light emitting portion on a substrate, wherein the light emitting portion includes a driving transistor and an organic light emitting diode connected to the driving transistor, and an extension line extending from a drain electrode of the driving transistor and a first electrode of the organic light emitting diode are connected to each other in the transmission portion.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: January 23, 2024
    Assignee: LG Display Co., Ltd.
    Inventor: Taehan Kim
  • Patent number: 11882724
    Abstract: A first light-emitting element and a second light-emitting element that have a resonance structure that causes output light from a light-emission functional layer to resonate between a reflective layer and a semi-transmissive reflective layer, and a pixel definition layer, and in which an aperture part is formed to correspond to each of the first light-emitting element and the second light-emitting element, are formed on a base. A first interval between the reflective layer and the semi-transmissive reflective layer in the first light-emitting element and a second interval between the reflective layer and the semi-transmissive reflective layer in the second light-emitting element are different, and a film thickness of the pixel definition layer is less than a difference between the first interval and the second interval.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: January 23, 2024
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Ryoichi Nozawa, Atsushi Amano, Takeshi Koshihara, Akio Fukase, Shinichi Iwata
  • Patent number: 11878905
    Abstract: The present disclosure related to a micro-electromechanical system (MEMS) device and a method of forming the same. The MEMS device includes a substrate, a cavity, an interconnection structure and a proof mass. The substrate includes a first surface and a second surface opposite to the first surface. The cavity is disposed in the substrate to extend between the first surface and the second surface. The interconnection structure is disposed on the first surface of the substrate, over the cavity. The proof mass is disposed on the interconnection structure, wherein the proof mass is partially suspended over the interconnection structure.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: January 23, 2024
    Assignee: Vanguard International Semiconductor Corporation
    Inventor: Jia Jie Xia
  • Patent number: 11881514
    Abstract: Provided is a highly reliable semiconductor device in which an influence on device characteristics can be reduced while improving a high temperature and high humidity bias resistance of a termination structure (termination region) of a chip by a relatively simple method. The semiconductor device includes an active region disposed on a main surface of a semiconductor substrate, and a termination region disposed on the main surface so as to surround the active region. The termination region includes an interlayer insulating film formed on the main surface of the semiconductor substrate, and an organic protective film formed so as to cover the interlayer insulating film. An insulating film having a thickness of 100 nm or less and containing nitrogen is provided between the interlayer insulating film and the organic protective film.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: January 23, 2024
    Assignee: HITACHI POWER SEMICONDUCTOR DEVICE, LTD.
    Inventors: Shigeo Tokumitsu, Masaki Shiraishi, Yutaka Kato, Tetsuo Oda
  • Patent number: 11882774
    Abstract: Methods, systems, and devices for a low resistance crosspoint architecture are described. A manufacturing system may deposit a thermal barrier material, followed by a first layer of a first conductive material, on a layered assembly including a patterned layer of electrode materials and a patterned layer of a memory material. The manufacturing system may etch a first area of the layered assembly to form a gap in the first layer of the first conductive material, the thermal barrier material, the patterned layer of the memory material, and the patterned layer of electrode materials. The manufacturing system may deposit a second conductive material to form a conductive via in the gap, where the conductive via extends to a height within the layered assembly that is above the thermal barrier material.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: January 23, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Rajasekhar Venigalla, Patrick M. Flynn, Josiah Jebaraj Johnley Muthuraj, Efe Sinan Ege, Kevin Lee Baker, Tao Nguyen, Davis Weymann
  • Patent number: 11881527
    Abstract: A lateral diffusion metal-oxide semiconductor (LDMOS) device includes a first gate structure and a second gate structure extending along a first direction on a substrate, a first source region extending along the first direction on one side of the first gate structure, a second source region extending along the first direction on one side of the second gate structure, a drain region extending along the first direction between the first gate structure and the second gate structure, a guard ring surrounding the first gate structure and the second gate structure, and a shallow trench isolation (STI) surrounding the guard ring.
    Type: Grant
    Filed: September 12, 2021
    Date of Patent: January 23, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ling-Chun Chou, Yu-Hung Chang, Kun-Hsien Lee
  • Patent number: 11873212
    Abstract: A chip package includes a semiconductor substrate and a metal layer. The semiconductor substrate has an opening and a sidewall surrounding the opening, in which an upper portion of the sidewall is a concave surface. The semiconductor substrate is made of a material including silicon. The metal layer is located on the semiconductor substrate. The metal layer has plural through holes above the opening to define a MEMS (Microelectromechanical system) structure, in which the metal layer is made of a material including aluminum.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: January 16, 2024
    Assignee: Xintec Inc.
    Inventors: Wei-Luen Suen, Jiun-Yen Lai, Hsing-Lung Shen, Tsang-Yu Liu