Patents Examined by Sheng-Bai Zhu
-
Patent number: 12199032Abstract: According to one embodiment, a semiconductor memory device includes first and second conductor layers, a first pillar, a first contact, and a source line drive circuit. The first pillar is passing through the second conductor layers. The first pillar includes a first semiconductor layer and a second insulator layer. The first semiconductor layer includes a side surface partially in contact with the first conductor layer. The first contact is passing through the second conductor layers. The first contact includes a third conductor layer and a third insulator layer. The third conductor layer includes a side surface partially in contact with the first conductor layer. The source line drive circuit is electrically coupled to the first conductor layer via the first contact.Type: GrantFiled: February 9, 2022Date of Patent: January 14, 2025Assignee: KIOXIA CORPORATIONInventor: Hisashi Kato
-
Patent number: 12191344Abstract: A discharge protection semiconductor structure is provided that includes a substrate, a well positioned on the substrate, a first contact diffusion and a second contact diffusion, the first contact diffusion and the second contact diffusion positioned on the top side of the well, and a resistor positioned between the first contact diffusion and a second contact diffusion.Type: GrantFiled: July 21, 2021Date of Patent: January 7, 2025Assignee: Nexperia B.V.Inventor: Hans-Martin Ritter
-
Patent number: 12166063Abstract: An optoelectronic device includes an array of germanium-based photodiodes including a stack of semiconductor layers, made from germanium, trenches, and a passivation semiconductor layer, made from silicon. Each photodiode includes a silicon-germanium peripheral zone in the semiconductor portion formed through an interdiffusion of the silicon of the passivation semiconductor layer and of the germanium of the semiconductor portion.Type: GrantFiled: December 2, 2021Date of Patent: December 10, 2024Assignee: Commissariat A L'Energie Atomique et aux Energies AlternativesInventors: Jean-Louis Ouvrier-Buffet, Abdelkader Aliane, Jean-Michel Hartmann, Julie Widiez
-
Patent number: 12150324Abstract: A display device includes a substrate, a plurality of pixels above the substrate, each of the plurality of pixels including a first electrode, a light emitting layer above the first electrode, and a second electrode above the light emitting layer, a display region including the plurality of pixels, a first organic insulating layer located between the substrate and the light emitting layer, and a sealing layer above the second electrode and covering the plurality of pixels. The first organic insulating layer includes a first opening part surrounding the display region, the sealing layer has a first inorganic insulating layer, a second organic insulating layer and a second inorganic insulating layer, the first inorganic insulating layer and the second inorganic insulating layer cover the first opening part, a second opening part passing through the first inorganic insulating layer and the second inorganic insulating layer.Type: GrantFiled: November 30, 2021Date of Patent: November 19, 2024Assignee: Japan Display Inc.Inventors: Akinori Kamiya, Kota Makishi
-
Patent number: 12142604Abstract: According to one embodiment, a first P-type transistor with a gate is coupled to a first node, and a drain is coupled to a second node. A first N-type transistor with a gate is coupled to the first node, and a drain is coupled to the second node. A second P-type transistor with a gate is coupled to the second node, and a drain is coupled to a third node. A second N-type transistor with a gate is coupled to the second node, and a drain is coupled to the third node. The first P-type transistor is smaller than the first N-type transistor. The second N-type transistor is smaller than the second P-type transistor. The second N-type transistor is smaller than the first N-type transistor.Type: GrantFiled: September 8, 2021Date of Patent: November 12, 2024Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage CorporationInventors: Toshiki Seshita, Yasuhiko Kuriyama
-
Patent number: 12142634Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.Type: GrantFiled: April 8, 2021Date of Patent: November 12, 2024Assignee: Sony Group CorporationInventors: Kelin J. Kuhn, Seiyon Kim, Rafael Rios, Stephen M. Cea, Martin D. Giles, Annalisa Cappellani, Titash Rakshit, Peter Chang, Willy Rachmady
-
Patent number: 12136622Abstract: A bidirectional electrostatic discharge protection device includes a first transient voltage suppressor chip, a second transient voltage suppressor chip, a first conductive wire, and a second conductive wire. The first transient voltage suppressor chip includes a first diode and a first bipolar junction transistor. The first diode and the first bipolar junction transistor are electrically connected to a first pin. The second transient voltage suppressor chip includes a second diode and a second bipolar junction transistor. The second diode and the second bipolar junction transistor are electrically connected to a second pin. The first conductive wire is electrically connected between the first diode and the second bipolar junction transistor. The second conductive wire is electrically connected between the second diode and the first bipolar junction transistor.Type: GrantFiled: January 3, 2022Date of Patent: November 5, 2024Assignee: Amazing Microelectronic Corp.Inventors: Tun-Chih Yang, Zi-Ping Chen, Kun-Hsien Lin
-
Patent number: 12132042Abstract: The ability of a grounded gate NMOS (ggNMOS) device to withstand and protect against human body model (HBM) electrostatic discharge (ESD) events is greatly increased by resistance balancing straps. The resistance balancing straps are areas of high resistance formed in the substrate between an active area that includes a MOSFET of the ggNMOS device and a bulk ring that surrounds the active area. A Vss rail is coupled to the substrate beneath the MOSFET through the bulk ring. The substrate beneath the MOSFET provides base regions for parasitic transistors that switch on for the ggNMOS device to operate. The straps inhibit low resistance pathways between the base regions and the bulk ring and prevent a large portion of the ggNMOS device from being switched off while a remaining portion of the ggNMOS device remains switched on. The strap may be divided into segments inserted at strategic locations.Type: GrantFiled: July 25, 2022Date of Patent: October 29, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Hsiao-Ching Huang, Sheng-Fu Hsu, Hao-Hua Hsu, Pin-Chen Chen, Lin-Yu Huang, Yu-Chang Jong
-
Patent number: 12127431Abstract: The present disclosure provides an OLED array substrate, a display panel and a display device. The OLED array substrate includes a first display region and a second display region; the first display region is adjacent to the second display region, and includes first OLED pixels arranged in an array; the second display region includes second OLED pixels arranged in an array; a pixel density of the second OLED pixels is less than a pixel density of the first OLED pixels; second pixel driving units of second OLED pixels and first pixel driving units of first OLED pixels in a same row are connected to a same first-type scan line, there is at least one second-type scan line between two adjacent first-type scan lines; one second-type scan line is only connected to first pixel driving units of first OLED pixels in a same row.Type: GrantFiled: May 12, 2021Date of Patent: October 22, 2024Assignee: Kunshan Go-Visionox Opto-Electronics Co., Ltd.Inventors: Miao Chang, Lu Zhang, Siming Hu, Zhenzhen Han
-
Patent number: 12113058Abstract: A display device includes a substrate including a display area and a non-display area; a semiconductor layer including a source area, a channel area, and a drain area and disposed in the non-display area of the substrate; a gate electrode overlapping the channel area of the semiconductor layer; a gate insulating layer disposed between the gate electrode and the channel area of the semiconductor layer; a source electrode electrically connected to the source area of the semiconductor layer; and a drain electrode electrically connected to the drain area of the semiconductor layer, wherein a lateral side of the gate electrode overlaps the drain electrode.Type: GrantFiled: March 29, 2021Date of Patent: October 8, 2024Assignee: SAMSUNG DISPLAY CO., LTD.Inventors: Kang Moon Jo, An Su Lee, June Whan Choi
-
Patent number: 12107044Abstract: Embodiments include a substrate and a method of forming the substrate. A substrate includes an interlayer dielectric and conductive traces in the interlayer dielectric (ILD). The conductive traces may include a first conductive trace surrounded by a second and third conductive traces. The substrate also includes a photoresist block in a region of the ILD. The region may be directly surrounded by the ILD and first conductive trace, and the photoresist block may be between the first conductive trace. The photoresist block may have a top surface that is substantially coplanar to top surfaces of the ILD and conductive traces. The photoresist block may have a width substantially equal to a width of the conductive traces. The photoresist block may be in the first conductive trace and between the second and third conductive traces. The photoresist block may include a metal oxide core embedded with organic ligands.Type: GrantFiled: April 19, 2019Date of Patent: October 1, 2024Assignee: Intel CorporationInventors: Marie Krysak, Kevin L. Lin, Robert Bristol, Charles H. Wallace
-
Patent number: 12074036Abstract: In some embodiments, the present disclosure relates to a high-resistivity silicon-on-insulator (SOI) substrate, including a first polysilicon layer arranged over a semiconductor substrate. A second polysilicon layer is arranged over the first polysilicon layer, and a third polysilicon layer is arranged over the second polysilicon layer. An active semiconductor layer over an insulator layer may be arranged over the third polysilicon layer. The second polysilicon layer has an elevated concentration of oxygen compared to the first and third polysilicon layers.Type: GrantFiled: November 5, 2021Date of Patent: August 27, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yu-Hung Cheng, Cheng-Ta Wu, Chen-Hao Chiang, Alexander Kalnitsky, Yeur-Luen Tu, Eugene Chen
-
Patent number: 12068268Abstract: A semiconductor device includes first conductive films that are provided, above a semiconductor substrate, at least on both sides of a non-formation region in which the first conductive films are not provided; an interlayer dielectric film including a first portion that is provided on the non-formation region, second portions provided above the first conductive film on both sides of the non-formation region, and a step portion that connects the first portion and the second portions; a second conductive film provided above the interlayer dielectric film; through terminal portions that penetrate the second portions of the interlayer dielectric film; and a wire bonded with the second conductive film above the first portion, where the through terminal portions include one or more first through terminal portions and one or more second through terminal portions being provided at positions opposite to each other with a bonded portion of the wire being interposed therebetween.Type: GrantFiled: February 16, 2023Date of Patent: August 20, 2024Assignee: FUJI ELECTRIC CO., LTD.Inventor: Morio Iwamizu
-
Patent number: 12068159Abstract: Methods and apparatus for laser patterning leverage mask trench debris removal techniques to form etch singulation trenches. In some embodiments, the method includes forming a mask layer on the wafer, forming a pattern in the mask layer using a laser of a laser assembly where the pattern allows singulation of the wafer by deep etching and forms a trench in the mask layer with a laser beam which has a process point at a bottom of the trench, directing gas nozzles that flow a pressurized gas at the process point in the trench as the pattern is formed with a gas flow angle relative to the process point and evacuating debris from the trench using an area of negative pressure where the gas flow from gas nozzles and the area of negative pressure are in fluid contact and are confined within a cylindrical housing.Type: GrantFiled: March 31, 2021Date of Patent: August 20, 2024Assignee: APPLIED MATERIALS, INC.Inventors: Karthik Narayanan Balakrishnan, Jungrae Park, Arunkumar Tatti, Sriskantharajah Thirunavukarasu, Eng Sheng Peh
-
Patent number: 12068325Abstract: A vertical field effect transistor (VFET) cell implementing a VFET circuit over a plurality of gate grids includes: a 1st circuit including at least one VFET and provided over at least one gate grid; and a 2nd circuit including at least one VFET and provided over at least one gate grid formed on a left or right side of the 1st circuit, wherein a gate of the VFET of the 1st circuit is configured to share a gate signal or a source/drain signal of the VFET of the 2nd circuit, and the 1st circuit is an (X?1)-contacted poly pitch (CPP) circuit, which is (X?1) CPP wide, converted from an X-CPP circuit which is X CPP wide and performs a same logic function as the (X?1)-CPP circuit, X being an integer greater than 1.Type: GrantFiled: January 17, 2023Date of Patent: August 20, 2024Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventor: Jung Ho Do
-
Patent number: 12058848Abstract: The present disclosure provides a semiconductor structure having an air gap with a height greater than or equal to that of an adjacent bit line. The semiconductor structure includes a substrate; a first bit line structure disposed over the substrate; a second bit line structure disposed adjacent to the first bit line structure over the substrate; a first dielectric layer, surrounding the first bit line structure and the second bit line structure; and an air gap, disposed between the first bit line structure and the second bit line structure, and sealed by the first dielectric layer, wherein a height of the air gap is greater than or equal to a height of the first bit line structure.Type: GrantFiled: June 29, 2022Date of Patent: August 6, 2024Assignee: NANYA TECHNOLOGY CORPORATIONInventor: Lu-Wei Chung
-
Patent number: 12027493Abstract: A chip package assembly and method for fabricating the same are provided which utilize a plurality of posts in mold compound for improved resistance to delamination. In one example, a chip package assembly is provided that includes a first integrated circuit (IC) die, a substrate, a redistribution layer, a mold compound and a plurality of posts. The redistribution layer provides electrical connections between circuitry of the first IC die and circuitry of the substrate. The mold compound is disposed in contact with the first IC die and spaced from the substrate by the redistribution layer. The plurality of posts are disposed in the mold compound and are laterally spaced from the first IC die. The plurality of posts are not electrically connected to the circuitry of the first IC die.Type: GrantFiled: November 4, 2019Date of Patent: July 2, 2024Assignee: XILINX, INC.Inventors: Jaspreet Singh Gandhi, Suresh Ramalingam
-
Patent number: 12021112Abstract: An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a substrate and an active pattern formed over the substrate and including first to fourth regions. A gate insulation layer is formed over the active pattern and the substrate, and a first gate electrode is formed over the gate insulation layer and partially overlapping the active pattern. The first gate electrode, the first region and the second region define a first transistor. A second gate electrode is formed on the same layer as the first gate electrode. The second gate electrode, the third region and the fourth region define a second transistor, and the second gate electrode, the second region and the fourth region define a third transistor. A first insulating interlayer is formed over the first gate electrode, the second gate electrode, and the gate insulation layer.Type: GrantFiled: February 7, 2020Date of Patent: June 25, 2024Assignee: Samsung Display Co., Ltd.Inventors: Sun-Ja Kwon, Jae-Yong Lee, Ji-Eun Lee, So-Young Kang, Sang-Ho Seo
-
Patent number: 12022676Abstract: A display panel includes a substrate including an emission area and a non-emission area; an auxiliary electrode placed in the non-emission area, and supplied with power for driving the display panel; a protective layer placed on the auxiliary electrode; a contact hole penetrating through the protective layer, and exposing the auxiliary electrode; a connection electrode placed in such a manner as to be in contact with the auxiliary electrode within the contact hole; an electron auxiliary layer placed on the connection electrode; a cathode electrode placed on the electron auxiliary layer; and a protrusion formed protruding from the connection electrode, wherein the protrusion is formed in such a manner as to form a shade region on the connection electrode, and the cathode electrode is in contact with the connection electrode in the shade region.Type: GrantFiled: December 30, 2020Date of Patent: June 25, 2024Assignee: LG DISPLAY CO., LTD.Inventors: Jeongwon Lee, Jaeki Lee, Seonghyun Kim, Changyong Gong
-
Patent number: 11973075Abstract: An ESD protection device includes a PN diode formed in a semiconductor body. The PN diode has a first contact coupled to a metal structure on a front side of the semiconductor body and a second contact coupled to a metal structure on a back side of the semiconductor body. The metal coupled to the first contact is spaced apart from the metal coupled to the second contact by a thickness of the semiconductor body. This spacing greatly reduces the capacitance associated with the metal structures, which can substantially reduce the overall capacitance added to an I/O channel by the ESD protection device and thereby improve the performance of a high-speed circuit that uses the I/O channel.Type: GrantFiled: February 22, 2021Date of Patent: April 30, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tao Yi Hung, Yu-Xuan Huang, Kuo-Ji Chen