Patents Examined by Stacey N MacFarlane
  • Patent number: 11971412
    Abstract: Complexes containing a labeled polypeptide and an antibody, and the use of such complexes as research, diagnostic, and clinical tools, are described herein.
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: April 30, 2024
    Assignee: MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH
    Inventors: Wendy K. Nevala, Svetomir N. Markovic, John T. Butterfield, Daniel J. Knauer
  • Patent number: 11959926
    Abstract: Humanized mouse models and methods are provided for determining whether administration of an immunomodulatory drug likely elicits a severe cytokine release syndrome in a human. Humanized mouse models and methods are also provided for determining the immunotoxicity in a human of a drug candidate or of drug combinations.
    Type: Grant
    Filed: June 26, 2023
    Date of Patent: April 16, 2024
    Assignee: The Jackson Laboratory
    Inventors: James Keck, Chunting Ye
  • Patent number: 11959909
    Abstract: The present disclosure provides a basal ganglia-on-a-chip for screening therapeutic agents for brain and nervous system diseases and a method for fabricating the same. The present invention provides a method for screening therapeutic agents for dopamine-dependent brain and nervous system diseases by using a basal ganglia-on-a-chip. When the basal ganglia-on-a-chip of the present invention is used in the effect evaluation of therapeutic agents for brain and nervous system diseases, the effect evaluation of therapeutic candidate substances can be economically and promptly carried out compared with an existing technique.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: April 16, 2024
    Assignee: SOGANG UNIVERSITY RESEARCH FOUNDATION
    Inventors: Jeong-Woo Choi, Won Jun Lee, Jae Wook Shin
  • Patent number: 11959925
    Abstract: Humanized mouse models and methods are provided for determining whether administration of an immunomodulatory drug likely elicits a severe cytokine release syndrome in a human. Humanized mouse models and methods are also provided for determining the immunotoxicity in a human of a drug candidate or of drug combinations.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: April 16, 2024
    Assignee: The Jackson Laboratory
    Inventors: James Keck, Chunting Ye
  • Patent number: 11938174
    Abstract: Compositions and methods useful for the treatment of neuromyelitis optica (NMO) or neuromyelitis optica spectrum disorder (NMOSD) are disclosed.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 26, 2024
    Assignee: Takeda Pharmaceutical Company Limited
    Inventors: Colin Broom, Jeffrey Dayno
  • Patent number: 11932703
    Abstract: The present invention is directed to a monoclonal mouse or humanized ROR1 antibody, or a single-chain variable fragment (scFv). The present invention is also directed to a mouse or humanized ROR1 chimeric antigen receptor (CAR) comprising from N-terminus to C-terminus: (i) a single-chain variable fragment (scFv) of the present invention, (ii) a transmembrane domain, (iii) at least one co-stimulatory domains, and (iv) an activating domain.
    Type: Grant
    Filed: May 22, 2023
    Date of Patent: March 19, 2024
    Inventors: Vita Golubovskaya, Lijun Wu
  • Patent number: 11913956
    Abstract: The present invention provides a tumor blood marker and a use thereof. Specifically, the present invention provides a use of a reagent, which is used to detect GAPDH in a blood sample, in a preparation of a detecting composition for tumor screening, risk evaluation of tumor development in subjects, distinction of tumor progression stages, identification of therapeutic efficacy of tumor and/or risk analysis of tumor progression. The present invention also provides a kit and a method for detecting GAPDH concentrations in blood samples.
    Type: Grant
    Filed: July 4, 2018
    Date of Patent: February 27, 2024
    Assignee: SHANDONG ZEJI BIOTECHNOLOGY CO., LTD.
    Inventor: Zesong Wang
  • Patent number: 11898164
    Abstract: Disclosed is a method for producing a spherical neural mass having suppressed teratoma formation. When using the spherical neural mass produced according to the method of the present disclosure, the purity of the neuronal progenitor cells may be improved, the teratoma formation may be suppressed, and the viability and recovery percentage of the cell may be increased.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: February 13, 2024
    Assignee: S.BIOMEDICS CO., LTD.
    Inventors: Myung Soo Cho, Mi Sun Lim, So Yeon Ji
  • Patent number: 11891442
    Abstract: Provided herein are compositions, methods, kits and systems for treating cells, tissues and subjects to alter age-related biology (e.g., to study or to treat age-related diseases and conditions). In particular, provided herein are compositions, methods, and uses for inhibition or modification of sialic acid or its cognate receptor to restore phagocytosis in aged cells.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 6, 2024
    Assignees: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE UNITED STATES GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Anton Wyss-Coray, John Vincent Pluvinage, Michael C. Bassik, Michael Haney, Benjamin Smith, Carolyn Bertozzi
  • Patent number: 11873321
    Abstract: Disclosed are methods for treating or preventing or delaying outset of Alzheimer's disease (AD) in a subject by targeting the novel pathway STAT1-CH25H in AD pathogenesis, specifically by administering to the subject a pharmaceutically effective amount of a STAT1 inhibitor, a CH25H inhibitor, or a 25-OHC inhibitor, for example, a 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor such as simvastatin.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: January 16, 2024
    Assignee: GenEros Biopharma Ltd.
    Inventors: Xin-Yuan Fu, Yi Zhou
  • Patent number: 11867701
    Abstract: The present disclosure provides methods for classifying a cell as abnormal based on HD5 protein detection as well as methods for predicting prognosis of a subject with Crohn's disease based on HD5 protein detection.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: January 9, 2024
    Assignee: Washington University
    Inventors: Thaddeus Stappenbeck, Ta-Chiang Liu, Kelli VanDussen
  • Patent number: 11851481
    Abstract: The present invention provides, among other aspects, methods and compositions for treating a central nervous system (CNS) disorder by delivering a therapeutically effective amount of a composition of pooled human immunoglobulin G (IgG) to the brain via intranasal administration of the composition directly to the olfactory epithelium of the nasal cavity. In particular, methods and compositions for treating Alzheimer's disease are provided.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: December 26, 2023
    Assignee: Takeda Pharmaceutical Company Limited
    Inventors: William H. Frey, II, Leah Ranae Bresin Hanson, Sharon Pokropinski, Francisco M. Rausa, III
  • Patent number: 11850273
    Abstract: Provided are methods and compositions from reprogramming human glial cells into human neurons. The reprogramming is achieved using combinations of compounds that can modify signaling via Transforming growth factor beta (TGF-?), Bone morphogenetic protein (BMP), glycogen synthase kinase 3 (GSK-3), and ?-secretase/Notch pathways. The reprogramming is demonstrated using groups of three or four compounds that are chosen from the group thiazovivin, LDN193189, SB431542, TTNPB, CHIR99021, DAPT, VPA, SAG; purmorphamine. Reprogramming is demonstrated using the group of LDN193189/CHIR99021/DAPT, the group of B431542/CHIR99021/DAPT, the group of LDN193189/DAPT/SB431542, the group of LDN193189/CHIR99021/SB431542, a three drug combination of SB431542/CHIR99021/DAPT. Reprogramming using functional analogs of the compounds is also provided, as are pharmaceutical formulations that contain the drug combinations.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: December 26, 2023
    Assignee: The Penn State Research Foundation
    Inventors: Gong Chen, Gang-Yi Wu, Lei Zhang, Jiu-Chao Yin, Hana Yeh, Ning-Xin Ma, Grace Lee
  • Patent number: 11834648
    Abstract: A method of generating a cellular model of Alzheimer's disease (AD) comprises integrating AD related gene to hiPSC to induce increased beta secretase and/or Abeta 42 peptides, and the cellular model of Alzheimer's disease (AD) is prepared by the method.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: December 5, 2023
    Assignee: Shenzhen Cell Inspire Biotechnology Co., Ltd.
    Inventors: Yubo Yan, Jian Fu, Min Zhou, Yuqing Liu, Lixiang Jiang, Bo Yang, Jiayin Yang
  • Patent number: 11827695
    Abstract: Disclosed herein are anti-?-synuclein antibodies which preferentially bind to oligomeric ?-synuclein over monomeric ?-synuclein, therapeutic compositions comprising the antibodies, and methods of using the antibodies to treat synucleinopathies.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: November 28, 2023
    Assignee: Bristol-Myers Squibb Company
    Inventors: Michael K. Ahlijanian, Jere Ernest Meredith, Jr., Nino Devidze, John David Graef, Edward L. Halk
  • Patent number: 11827683
    Abstract: Disclosed herein are multifunctional polypeptides comprising a first domain comprising an anti-tau antigen binding domain and a second domain comprising a proteasome-targeting PEST motif, and methods for using these polypeptides in treatment of tauopathies.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: November 28, 2023
    Assignee: Regenerative Research Foundation
    Inventors: Sally Temple, Anne Messer, David Butler
  • Patent number: 11827671
    Abstract: The invention provides methods for treating Systemic Sclerosis by administering a dual-V region bispecific antibody that specifically binds IL-4 and IL-13.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 28, 2023
    Assignee: SANOFI
    Inventors: Christina Soubrane, Corinne Esperet, Frederic Marrache, Peter Wung
  • Patent number: 11826345
    Abstract: Dosing regimens and methods are disclosed for upregulating protein kinase C (PKC) while reducing subsequent downregulation, comprising administering a PKC activator once a week for three consecutive weeks followed by cessation of administration or dosing for three consecutive weeks. Also described are methods for improving or enhancing cognitive ability, preventing or treating cognitive impairment, preventing or treating a neurodegenerative disease or condition, and/or preventing or treating a disease or condition associated with neuronal or synaptic loss according to the disclosed regimens.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: November 28, 2023
    Assignee: Synaptogenix, Inc.
    Inventor: Daniel L. Alkon
  • Patent number: 11779600
    Abstract: The present invention describes a method of treating, preventing, reducing the likelihood of or alleviating a symptom of Alzheimer's disease and associated conditions by increasing OPN expression. The invention further provides for a method of improving cognitive function in a subject in need thereof.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: October 10, 2023
    Assignee: CEDARS-SINAI MEDICAL CENTER
    Inventors: Maya Koronyo, Altanchimeg Rentsendorj, Yosef Koronyo, Keith L. Black
  • Patent number: 11771753
    Abstract: The present invention provides a vaccine composition for use in neurodegenerative diseases and an infectious virus vaccine composition for inducing an antibody recognizing the conformation of antigens. The vaccine composition of the present invention induces the production of an antibody recognizing the conformation of antigens. The antibody recognizing the conformation of antigens has high specificity for an antigen, and thus can be useful for ameliorating, preventing or treating diseases.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: October 3, 2023
    Inventors: Joon Haeng Rhee, Shee Eun Lee, Kwangjoon Jeong, Sang Chul Park, Wenzhi Tan