Patents Examined by Stanley J Pruchnic
  • Patent number: 6976782
    Abstract: In a plasma processing system, a method of determining the temperature of a substrate is disclosed. The method includes positioning the substrate on a substrate support structure, wherein the substrate support structure includes a chuck. The method further includes creating a temperature calibration curve for the substrate, the temperature calibration curve being created by measuring at least a first substrate temperature with an electromagnetic measuring device, and measuring a first chuck temperature with a physical measuring device during a first isothermal state. The method also includes employing a measurement from the electromagnetic measurement device and the temperature calibration curve to determine a temperature of the substrate during plasma processing.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: December 20, 2005
    Assignee: Lam Research Corporation
    Inventor: Robert J. Steger
  • Patent number: 6974250
    Abstract: The present invention relates to providing a temperature sensor that is mountable on an aircraft and includes a thermometer or temperature sensing element for sensing temperature of airflow. A heater is provided on the probe to bias the temperature sensed by the thermometer or temperature sensing element, in a manner such that the temperature measured is at a substantially known offset from the static temperature surrounding the temperature sensor. Control of the offset can be achieved by regulating airflow or heat provided. The heating effect is controlled to be a substantially equal and opposite match to the decreased total temperature resulting from lower airspeed or decreased airflow. In this manner, the thermometer or temperature sensing element will essentially operate at a fixed offset above static temperature, that is the temperature in undisturbed air in which the aircraft is operating, over a fairly wide range of flow rates.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: December 13, 2005
    Assignee: Rosemount Aerospace Inc.
    Inventor: John A. Severson
  • Patent number: 6971792
    Abstract: A device for measuring the flux received by a specimen in fire test apparatuses has a copper disk or plate of the same dimensions and the same type of surface coating as a typical material specimen, an embedded heating coil and thermocouple, and an insulated sample holder similar to that used for a specimen. The transient response of the embedded thermocouple is measured for several different levels of imposed incident radiation without electrical heating and for several different known levels of electrical heating without any imposed radiation. The principle of Electrical Substitution Radiometry (ESR) is applied, and the transient responses to incident radiation and electrical heating under identical thermal conditions are compared to determine the amount of incident radiation that is actually absorbed by the device while it is being irradiated. The situations are kept thermally identical, thereby insuring that all effects due to heat losses (e.g. convection, radiation and conduction) are exactly the same.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: December 6, 2005
    Assignee: FM Global Technologies LLC
    Inventors: John L. de Ris, Mohammed M. Khan
  • Patent number: 6966692
    Abstract: A cloud point monitoring device which includes thermal conductive surface, cooler, temperature sensor, detection volume, detection wall unit, fiber optic cables for transmitting light, lighter emitter, light detector, and a data acquisition and control unit. The cloud point monitoring device provides an instrument to accurately measure the cloud point of diesel fuel indicate the approximate level of crystallization in diesel fuel that has been chilled beyond its cloud point and indicate the approximate energy content of diesel fuel. The cloud point monitoring device design allows it to be made small enough to be mounted in a fuel system of a vehicle.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: November 22, 2005
    Assignee: Phase Technology
    Inventors: Charles Y. Tsang, Gordon S. Y. Chiu
  • Patent number: 6964516
    Abstract: A device is provided for measuring temperature in molten metals with an optical fiber. The optical fiber is connected directly or indirectly to a measurement instrument and is held by a carrier. The immersion end of the fiber is fed through a body that can be consumed in the metal melt. The consumable body exhibits a consumption rate of at most 10 cm/min, and the consumption rate is approximately equal to or greater than the rate at which the structure of the optical fiber is destroyed.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: November 15, 2005
    Assignee: Heraeus-Electro Nite International N.V.
    Inventor: Thomas C. Coleman, Jr.
  • Patent number: 6964515
    Abstract: A temperature determining device is composed of a temperature detecting unit that detects a temperature of a determination object member based on an intensity of infrared rays from the object member, a unit for determining a temperature for correction that determines a temperature of an opposing member opposed to the object member or a temperature of a member whose temperature changes in correlation to a change in the temperature of the opposing member, and a calculating unit that corrects the detected temperature obtained by the temperature detecting unit using the temperature as the temperature for correction obtained by the unit for determining a temperature for correction. Thus, stable temperature determination can be performed accurately without being influenced by infrared rays from around a determination object member.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: November 15, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kenji Asakura, Keisuke Fujimoto, Masaaki Nakano
  • Patent number: 6960019
    Abstract: A method of monitoring a temperature condition includes inputting a light pulse into a fiber optic cable and receiving a reflection signal that arises from said input light pulse in said fiber optic cable. A temperature condition along the fiber optic cable and a location of the temperature condition along the fiber optic cable is determined based on said reflection signal.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: November 1, 2005
    Assignee: Airbus Deutschland GmbH
    Inventor: Hans-Joachim Dammann
  • Patent number: 6945692
    Abstract: A system for monitoring a temperature condition includes a fiber optic cable, a light emitting device coupled to the fiber optic cable and configured to input a light pulse into the fiber optic cable, and an optical receiver coupled to the fiber optic cable and configured to receive a reflection signal that arises from the input light pulse in the fiber optic cable. A processor of the system is configured to determine a temperature condition along the fiber optic cable and a location of the temperature condition along the fiber optic cable based on the reflection signal.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: September 20, 2005
    Assignee: Airbus Deutschland GmbH
    Inventor: Hans-Joachim Dammann
  • Patent number: 6939038
    Abstract: A multiple measurement memory-type electronic thermometer includes an ear temperature measuring unit, a microprocessor, a keypad unit, a display unit, and a memory unit. The ear temperature measuring unit, the display unit, and the memory unit are controlled by the microprocessor. When the activation key of the keypad unit is pressed by the user, being controlled by the microprocessor, the ear temperature unit is activated to perform measurement. The measuring result of the ear temperature unit is sent back to the microprocessor, displayed by the display unit, and saved in the memory unit. The memory unit is partitioned into a plurality of independent memory sectors. Each sector includes a queue data structure, such that the ear temperature measured from each person and the measuring time can be stored in the corresponding memory sector. Therefore, measurement of multiple people can be performed, memorized and retrieved.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: September 6, 2005
    Assignee: Innovatech Inc.
    Inventor: Chin-Chih Hsieh
  • Patent number: 6939035
    Abstract: A device (10) for calibrating tympanic thermometers includes an enclosure (12) which may be heated or cooled depending upon the testing temperature. Within the enclosure (12) there is provided a sealed flask (14) which contains substance (16) which melts at the test temperature (this may be ethylene carbonate, melting point 36.3° C.). Located within the sealed flask (14) is a re-entrant well (18) which provides the blackbody for testing tympanic thermometers and a viewing aperture (20). The well (18) is treated to achieve a high surface emissivity. The device (10) allows the testing of thermometers by measuring the triple point or melting point of the substance (16). As the temperature of the substance (16) is accurately known, so is the temperature in the blackbody cavity (18) and thermometers can be calibrated thereby.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: September 6, 2005
    Assignee: The Secretary of State of Her Majesty's Britannic Government
    Inventor: Graham Machin
  • Patent number: 6932504
    Abstract: A self-detecting type cantilever for an atomic force microscope (AFM) has an electro-flexural conversion element for converting a flexural amount of the cantilever into an electric current or voltage, a temperature measurement element disposed at a front end portion of the cantilever for measuring a temperature, and a heating element disposed at the front end portion of the cantilever for heating the temperature measurement element. The temperature measurement element and the heating element are superposed with each other on a main face of the cantilever via an electrical insulating layer. As a result, even if the amount of electric energy supplied to the heating element is reduced, it is possible to effectively supply an amount of heat necessary for measurement to the temperature measurement element. Therefore, by minimizing the heat to be supplied to a sample and the cantilever, the respondency of measurement is improved and temperature measurement can be performed with a high degree of accuracy.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: August 23, 2005
    Assignee: SII NanoTechnology Inc.
    Inventors: Hiroshi Takahashi, Yoshiharu Shirakawabe, Tadashi Arai
  • Patent number: 6929396
    Abstract: A system for monitoring the temperature prevailing in the stator unit of an electric drive includes a temperature sensor that is integrated into the windings of the stator unit and that transmits a temperature-dependent sensor signal. The sensor signal may be injected via an electrical transmitter unit into the signal processing unit of a position measuring device connected to the drive.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: August 16, 2005
    Assignee: Johannes Heidenhain GmbH
    Inventors: Franz Gramsamer, Erwin Bratzdrum, Robert Wastlhuber, Udo Ollert
  • Patent number: 6929397
    Abstract: Arrangement that supports a temperature sensor comprising a terminal probe, applied on the outside of a preferably cylindrical body, and comprising an elastic ring arranged in contact with said body and provided with a hole accommodating said terminal probe; the elastic ring is interrupted by a split-like gap that increases the elastic adaptation ability thereof. Preferably, on the outside of said ring there is provided a perimetrical groove and said hole is obtained by appropriately shaping of inner surfaces of said groove. On the inside of the ring there may be provided a through-slit, so that the groove is capable of being spread apart in correspondence of said hole.
    Type: Grant
    Filed: December 1, 2001
    Date of Patent: August 16, 2005
    Assignee: Sipa S.P.A.
    Inventor: Pietro Massimo Ren
  • Patent number: 6926439
    Abstract: A dew point hygrometer for determining the dew point of a gas in which a displaceable transparent film is in contact with the gas and forms a condensation surface. The film is placed on a temperature control device controlling its temperature and an optic fiber, emits light on the film and reflected light is detected in another optic fiber, the two optical fibers being positioned at an angle with respect to the film. Condensation formed on the film changes the light transmitted by the film which is periodically displaced so that a new uncontaminated regions are exposed to the light.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: August 9, 2005
    Assignee: Optiguide Ltd.
    Inventor: Igor Zlochin
  • Patent number: 6926440
    Abstract: A solar receiver system for utilizing solar energy to produce electrical power and to generate a temperature profile of a plurality of receiver tubes utilized in the system. The solar receiver system includes a solar receiver having a plurality of receiver panels including the plurality of receiver tubes through which a coolant flows. Additionally, the solar receiver system includes a plurality of IR cameras adapted to view at least a portion of a surface area of the solar receiver. Each IR camera is adapted to have a field of view including a different specified region of the surface area of the solar receiver. Furthermore, the solar receiver system includes a master control system adapted to receive an IR image from each IR camera, wherein each IR image depicts surface area temperatures and variances over the region of the solar receiver viewed by each IR camera. The master control system generates a temperature profile of the surface area of the solar receiver utilizing the IR images.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: August 9, 2005
    Assignee: The Boeing Company
    Inventor: Robert Zachary Litwin
  • Patent number: 6923570
    Abstract: An automated test method characterizes the performance of commercially available thermal interface materials (TIM) for electronic cooling. Such automated internal test vehicle provides an independent study of various TIM's. A spectrum of materials are preferably tested using automated methods so the results are reported in a consistent way. Such reports simplify the comparison and selection of appropriate TIM material for various end-user applications. Such automated test method is observed to be faster and easier to use. It requires minimal operator intervention during the test.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: August 2, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Chih C Shih, Cullen E. Bash
  • Patent number: 6923573
    Abstract: The invention provides a cooling system for protecting an image fiber and an imaging device from thermal influences and a temperature measurement apparatus, for a molten metal, capable of being easily controlled and stably measuring the temperature. The temperature measurement apparatus for a molten metal comprises four connectable portions of a nozzle portion a purge/cooling gas introduction portion, an image fiber fitting portion with a window glass and an image fiber to a double pipe nozzle protection tube. A distance from a nozzle distal end as an introduction portion of thermal radiation light to a light reception portion at an image fiber distal end becomes short so that a greater amount of thermal radiation light can be received.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: August 2, 2005
    Assignees: Nippon Steel Corporation, Nittetsu Plant Designing Corporation
    Inventors: Kosuke Yamashita, Tomoaki Tanaka, Masato Sugiura, Kiyomi Horikoshi, Makoto Sumi
  • Patent number: 6918696
    Abstract: A temperature sensor includes a casing having a first part and a second part, a temperature detector for detecting temperature of fluid and a pair of outside wires connecting to the temperature detector. The casing further includes a mold portion and an insert portion. The mold portion is disposed in the first part of the casing. The insert portion is disposed in the second part of the casing, and includes a pair of holes for inserting the outside wires therein. The temperature detector is disposed in the first part of the casing. Each outside wire extends from the second part of the casing to an outside of the casing through the hole.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: July 19, 2005
    Assignee: Denso Corporation
    Inventors: Akihiko Hoshisashi, Seizaburou Kawashima
  • Patent number: 6910803
    Abstract: A method and apparatus for sensing temperature using optical fiber is provided. In one embodiment, a method for sensing temperature using optical fiber includes launching a polarized optical signal having sufficient intensity to produce Brillouin scattering of the signal into a polarization maintaining optical fiber, receiving a first signal reflected from the launched signal, receiving a second signal reflected from the launched signal; and resolving a metric indicative of temperature from the first and second received signals. The method is particularly useful for sensing temperature in hazardous locations such as down hole gas and oil field applications or other applications where minimization of strain effects to signal transmission is desired.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: June 28, 2005
    Assignee: Weatherford/Lamb, Inc.
    Inventor: Trevor MacDougall
  • Patent number: 6908227
    Abstract: An apparatus for managing the temperature of an integrated circuit having a multiple core microprocessor is described. Specifically, thermal sensors are placed at potential hot spots throughout each microprocessor core. A thermal management unit monitors the thermal sensors. If a thermal sensor identifies a hot spot, the thermal management unit adjusts the operating frequency and voltage of that microprocessor core accordingly.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: June 21, 2005
    Assignee: Intel Corporation
    Inventors: Stefan Rusu, Simon M. Tam