Patents Examined by Stephen E. Jones
  • Patent number: 10736209
    Abstract: A conductive transmission line structure includes a first conductive transmission line and a second conductive transmission line. A first segment and a second segment of the first conductive transmission line are respectively disposed adjacent to a third segment and a fourth segment of the second conductive transmission line. Line widths of the first segment and the third segment are respectively smaller than line widths of the second segment and the fourth segment. A spacing between the first segment and the third segment is smaller than a spacing between the second segment and the fourth segment. The first segment and the third segment provide a first impedance, and the second segment and the fourth segment provide a second impedance. The first impedance is smaller than the second impedance. The first and the third signal transmission nodes receive a differential signal pair.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: August 4, 2020
    Assignees: Global Unichip Corporation, Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Fan Yang, Yuan-Hung Lin, Yu-Cheng Sun
  • Patent number: 10734196
    Abstract: Provided is an impedance matching device for matching an impedance between a high-frequency power source and a load. The impedance matching device pertaining to the present invention is provided with: a matching circuit having variable capacitors, a capacitance of which is adjusted by an ON/OFF operation of a plurality of switches; a switch control unit for performing control for causing states of the switches of the variable capacitors to coincide with a target state in order to adjust the capacitance of the variable capacitors; and a switch state evaluation unit for evaluating whether a switch is in a state requiring suppression of a temperature increase. The switch control unit is configured so that when the switch state evaluation unit evaluates that a switch of the variable capacitors is in a state requiring suppression of a temperature increase, control is performed for suspending changing of a switch state of the switch for a set period and suppressing a temperature increase in the switch.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: August 4, 2020
    Assignee: DAIHEN Corporation
    Inventors: Tatsuya Morii, Masayuki Nakahama
  • Patent number: 10734697
    Abstract: Wideband coaxial low loss signal couplers use an electro-magnetic loop placed perpendicularly in a mantle hole of the external wall of the coaxial airline. The signal coupling factor increases with frequency thus favoring detection of harmonic components generated by the nonlinearly operated RF transistors. In order to adapt also to various power levels and associated harmonic receiver sensitivity the coupling factor can be adjusted either by controlling the penetration of the loop inside the airline cavity or by rotating the loop around its vertical axis.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: August 4, 2020
    Inventor: Christos Tsironis
  • Patent number: 10727028
    Abstract: Provided is a matching device capable of realizing a high-speed matching operation. A matching device of an embodiment includes a series part, a parallel part, and one or more variable direct-current power sources. The series part includes a first diode having a variable capacitance and is provided between an input terminal of a radio frequency wave and an output terminal of a radio frequency wave. The parallel part includes a second diode having a variable capacitance and is provided between a node between the input terminal and the output terminal and a ground. The one or more variable direct-current power sources are provided to apply variable reverse bias voltages to the first diode and the second diode.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: July 28, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Natsumi Torii
  • Patent number: 10727557
    Abstract: A dielectric filter includes a plurality of dielectric resonators. The dielectric filter also includes: a plurality of resonator body portions each formed of a first dielectric and respectively corresponding to the plurality of dielectric resonators, the first dielectric having a first relative permittivity; a peripheral dielectric portion formed of a second dielectric and lying around the plurality of resonator body portions, the second dielectric having a second relative permittivity lower than the first relative permittivity; and a shield portion formed of a conductor. Either one of a temperature coefficient of resonant frequency of the first dielectric at 25° C. to 85° C. and a temperature coefficient of resonant frequency of the second dielectric at 25° C. to 85° C. has a positive value and the other has a negative value.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: July 28, 2020
    Assignee: TDK CORPORATION
    Inventors: Yuta Ashida, Shigemitsu Tomaki, Yousuke Futamata, Shin Takane, Yasuharu Miyauchi, Kazunari Kimura
  • Patent number: 10727558
    Abstract: A circulator is provided, comprising, first second and third conductors forming three equally spaced junctions and a permanent magnet configured to apply a shaped bias magnetic field to a ferrite resonator in operable communication with the first, second, and third conductors. The permanent magnet comprises a substantially planar monolithic structure having defined thereon at least first and second substantially concentric regions having first and second respective magnetic field strength levels, wherein the second magnetic field strength level is lower than the first magnetic field strength level. The first and second magnetic field strength levels are configured to cooperate to shape an external bias magnetic field of the permanent magnet to counteract at least a portion of a demagnetizing effect resulting from of an overall shape of the ferrite resonator, to achieve a substantially uniform internal magnetic bias within at least a portion of the ferrite resonator.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: July 28, 2020
    Assignee: Raytheon Company
    Inventors: Sankerlingam Rajendran, James A. Carr, Cary C. Kyhl, Karl L. Worthen
  • Patent number: 10720309
    Abstract: In one embodiment, the present disclosure is directed to a method for impedance matching. The RF source provides at least two repeating, non-zero pulse levels, including a high-priority pulse level and a low-priority pulse level. The matching network comprises at least one EVC, which comprises discrete capacitors configured to switch in and out to provide a plurality of match configurations. Each EVC has a switching limit comprising a predetermined number of switches in or out of the EVC's discrete capacitors in a prior time interval. Upon determining that switching to a new match configuration would cause an EVC to reach the switching limit, the method determines whether the new match configuration is for the low- or high-priority pulse level. If for the low-priority pulse level, the method prevents the switching of the EVC. If for the high-priority pulse level, the method switches the EVC to the new match configuration.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: July 21, 2020
    Assignee: RENO TECHNOLOGIES, INC.
    Inventors: Tomislav Lozic, Bala Kandampalayam, Michael Ulrich, Imran Bhutta, Ronald Decker
  • Patent number: 10714314
    Abstract: In one embodiment, the present disclosure is directed to a method for impedance matching including a) positioning a matching network between a radio frequency (RF) source and a plasma chamber; b) determining, from among the plurality of match configurations, a new match configuration to be used when there is an expected pulse level change from a first of the pulse levels to a second of the pulse levels; and c) sending a control signal to alter the at least one EVC to provide the new match configuration. The control signal is sent a predetermined time period before a time for the expected pulse level change, the predetermined time period being substantially similar to a time period for the EVC to switch between two match configurations of the plurality of match configurations.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: July 14, 2020
    Assignee: RENO TECHNOLOGIES, INC.
    Inventors: Imran Bhutta, Tomislav Lozic, Ronald Decker, Bala Kandampalayam
  • Patent number: 10709014
    Abstract: A multilayer substrate includes a differential line including first and second line conductors provided on or in a laminated body including base material layers. The differential line includes line portions and a connecting portion that connects the line portions. The connecting portion includes first parallel conductors extending in parallel or substantially in parallel with each other, first interlayer connecting conductors that connect the first parallel conductors in parallel, and connect the first line conductor to the first parallel conductors, second parallel conductors extending in parallel or substantially in parallel with each other, and second interlayer connecting conductors that connect the second parallel conductors in parallel, and connect the second line conductor to the second parallel conductors. The first parallel conductors cross the second parallel conductors as viewed in a laminating direction of the base material layers.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: July 7, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Kuniaki Yosui
  • Patent number: 10707547
    Abstract: A frequency selective limiter (FSL) is provided having a transmission line structure with a tapered width. The FSL includes a magnetic material having first and second opposing surfaces. A first conductor is disposed on the first surface of the magnetic material, where a width of the first conductor decreases from a first end of the FSL to a second end of the FSL along a length of the FSL. Two second conductors are disposed on the second surface of the magnetic material, where a width of a gap between the two second conductors decreases from the first end of the FSL to the second end of the FSL along a length of the FSL. The first conductor and two second conductors form a biplanar waveguide transmission line.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: July 7, 2020
    Assignee: Raytheon Company
    Inventors: Matthew A. Morton, Gerhard Sollner, Jason C. Soric
  • Patent number: 10707833
    Abstract: An elastic wave device includes a piezoelectric substrate and IDT electrodes including first and second busbars and first and second electrode fingers. An intersection of the IDT electrodes includes a center region, and low-acoustic-velocity sections at both end portions of the center region in the direction in which the electrode fingers extend in the center region, sections in which the acoustic velocity is lower than in the center region. The length of the gap between the edge of the first electrode fingers and the second busbar and the length of the gap between the edge of the second electrode fingers and the first busbar are about 0.62? or more and about 0.98? or less, where ? denotes the wavelength, which is determined by the finger pitch of the IDT electrodes.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 7, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Masakazu Mimura
  • Patent number: 10709013
    Abstract: A multilayer wiring board having a first layer and a second layer laminated with a ground conductor, respectively, and having a differential wire line configured with a first wire line and a second wire line, includes a pair of through-holes and which is formed in the first layer and the second layer and electrically connects the first wire line and the second wire line arranged on one surface of the multilayer wiring board and the first wire line and the second wire line arranged on the other surface of the multilayer wiring board, respectively; and clearances and which insulate the ground conductor and the through-holes and, in which the pair of through-holes formed in the second layer is arranged so that a virtual line connecting centers of the pair of through-holes is inclined with respect to a line perpendicular to a signal propagation direction of the differential wire line.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: July 7, 2020
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kenji Kogo, Kei Nishimura
  • Patent number: 10700402
    Abstract: A compact millimeter-wave slide screw impedance tuner allows reducing to a minimum the insertion loss between the tuner and the wafer-probe. The structure of the tuner uses a 1 mm slabline and adapters, an eccentrically rotating remotely controlled wideband tuning probe and a sliding rack on which the tuning-probe is attached; the position of the rack is controlled by a permanently anchored motorized pinion. The construction method allows for maximum compactness, needed in order to be able to attach the tuner directly on the wafer-probe and minimize the insertion loss, while maintaining key advantages of electro-mechanical tuners, such as robustness, linearity, simplicity, tuning resolution and calibration and compatibility with existing load pull software and technology.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 30, 2020
    Inventor: Christos Tsironis
  • Patent number: 10693208
    Abstract: High GAMMA disc-shaped tuning probes for high frequency electro-mechanical slide screw impedance tuners use a notch slug concept, whereby the head of the tuning probes is split in two distinct lobes in a static pre-matching configuration. The disc-probes rotate around an axis perpendicular to the axis of the slotted airline of the tuner and do not require a cumbersome vertical axis. The rotation moves the tuning lobes gradually into the slot of the airline and controls the amplitude of the reflection factor through increasing coupling. The disc-probes comprise two diametrical opposite tuning lob assemblies designed to create high reflection (GAMMA) at two distinct frequency bands, one for high end frequencies and one for low end frequencies.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: June 23, 2020
    Inventor: Christos Tsironis
  • Patent number: 10693206
    Abstract: A nonreciprocal device includes a waveguide through which waves at a first frequency propagate with a first wavevector and with a second wavevector in a direction opposite to the first wavevector; a frequency-dependent device that operates within a frequency range and modifies the waves through the waveguide in a way that is dependent on the first frequency; and a set of couplers to couple the waveguide and the frequency-dependent device. Coupling rates of the set of couplers are modulated to enable nonreciprocal coupling, with respect to the frequency-dependent device, of the first wavevector compared to the second wavevector.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: June 23, 2020
    Assignee: Board of Trustees of the University of Illinois
    Inventors: Gaurav Bahl, Christopher Peterson
  • Patent number: 10693437
    Abstract: A millimeter-wave, high GAMMA on-wafer load pull system uses a tuner with extended inclined slabline (bend-line) and a manually controlled low profile pre-matching module, mounted on the bent section of the slabline next to the wafer-probe. The pre-matching module uses a mobile sliding rack and a rotating tuning probe; the rack is mounted on the slabline extension and controlled by a fixed pinion. Both the rack and tuning probe position and immersion into the slabline are controlled using sidewise mounted easily accessible manual knobs. The low profile of the pre-matching module is a crucial feature and allows integration on the extended slabline of the tuner in immediate proximity of the wafer-probe, thus minimizing any additional insertion loss and maximizing tuning range. Manual handling of the pre-matching tuning module is easy and a pre-calibration allows efficient on-wafer load pull operations.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: June 23, 2020
    Inventor: Christos Tsironis
  • Patent number: 10686239
    Abstract: A passive slide screw load pull tuner structure can be used on-wafer, in millimeter-wave frequencies from 25 to 110 GHz and above. It uses special tuning probe brackets and a short slabline mounted below the tuner housing, which holds the control gear. The tuner is mounted under an angle matching the angle of the wafer-probe, is connected directly of the wafer-probe and ensures optimum tuning range.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: June 16, 2020
    Inventor: Christos Tsironis
  • Patent number: 10673113
    Abstract: In a transmission line, a first ground conductor pattern and a second ground conductor pattern are connected through a first interlayer connecting conductor, and the first ground conductor pattern and a third ground conductor pattern are connected through a second interlayer connecting conductor. A first signal conductor pattern includes a first bypassing pattern portion that bypasses the first interlayer connecting conductor, and a second signal conductor pattern includes a second bypassing pattern portion that bypasses the second interlayer connecting conductor. Bypassing directions of the first bypassing pattern portion and the second bypassing pattern portion are opposite to each other.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: June 2, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Takahiro Baba, Yuya Dokai
  • Patent number: 10665918
    Abstract: A superconducting circulator device and method of operation. The superconducting circulator device comprises more than two resonators of equal static resonance frequency chained to a ring system by strong coupling. Each of the resonators comprises an adjustable inductor built into the each one of the resonators. The device comprises also a set of ports, each one of the ports coupled to a corresponding one of the more than two resonators, a set of modulators, each one of the modulators positioned adjacently to a corresponding one of the adjustable inductor, and a set of modulation control ports. Each of the modulation control ports is connected to a corresponding modulator of the set of modulators such that each of the modulation control ports controls the related static resonance frequency of the related resonators and such that the ring system is modulatable.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: May 26, 2020
    Assignee: International Business Machines Corporation
    Inventor: Peter Mueller
  • Patent number: 10658726
    Abstract: Aspects of the subject disclosure may include, generating, by a first hollow waveguide coupled to a first dielectric coupler, a first electromagnetic wave that couples onto a transmission medium, generating, by a second hollow waveguide coupled to a second dielectric coupler, a second electromagnetic wave that couples onto the transmission medium, combining the first electromagnetic wave and the second electromagnetic wave combine to form a combined electromagnetic wave that propagates along the transmission medium without requiring an electrical return path, and adjusting a first phase of the first electromagnetic wave, a second phase of the second electromagnetic wave, or both to adjust a wave mode of the combined electromagnetic wave. Other embodiments are disclosed.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: May 19, 2020
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Paul Shala Henry, Giovanni Vannucci, Thomas M. Willis, III, Shikik Johnson, Robert Bennett, Farhad Barzegar, Irwin Gerszberg, Donald J. Barnickel