Patents Examined by Steven J Bos
-
Patent number: 11912574Abstract: The present disclosure provides systems and methods for processing ammonia. A heater may heat reformers, where the reformers comprise ammonia (NH3) reforming catalysts in thermal communication with the heater. NH3 may be directed to the reformers from storage tanks, and the NH3 may be decomposed to generate a reformate stream comprising hydrogen (H2) and nitrogen (N2). At least part of the reformate stream can be used to heat reformers. Additionally, the reformate stream can be directed to a hydrogen processing module such as a fuel cell.Type: GrantFiled: October 27, 2022Date of Patent: February 27, 2024Assignee: AMOGY Inc.Inventors: Young Suk Jo, Gregory Robert Johnson, Hyunho Kim
-
Patent number: 11909046Abstract: Bimetallic polyanionic materials, such as silver vanadium phosphorus oxide (Ag2VO2PO4, SVOP), are promising cathode materials for Li batteries due in part to their large capacity and high current capability. A new synthesis of Ag2VO2PO4 based on microwave heating is disclosed, where the reaction time is reduced by approximately 100 times relative to other reported methods, and the crystallite size is controlled via synthesis temperature, showing a linear positive correlation of crystallite size with temperature. Reaction times of an hour or less are sufficient to render phase-pure material after reaction at 50° C. to 180° C., significantly lower than the temperatures reported for other methods. Crystallite sizes between 42 nm and 60 nm are achieved by the novel method, smaller than by other methods. Silver/vanadium atomic ratios of 1.96 to 2.04 in the as-synthesized SVOP result and appear temperature-dependent.Type: GrantFiled: March 7, 2018Date of Patent: February 20, 2024Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORKInventors: Kenneth J. Takeuchi, Esther S. Takeuchi, Amy C. Marschilok
-
Patent number: 11866803Abstract: The invention provides a complete set of treatment system and method for deep utilization of dolomite resources. The system includes a primary calcination device, a carbon dioxide capture device, a digestion device, a carbonization separation device, a pyrolysis device and a secondary calcination device; the primary calcination device includes a dolomite calciner, a plurality of hoardings and an exhaust pipe, and an exhaust chamber is formed between the hoardings, the top of the dolomite calciner and the outer wall of the blanking bin; the exhaust chamber is in communication with the carbon dioxide capture device through the exhaust pipe; the carbonization separation device includes a carbonization reaction tank whose gas inlet is in communication with the gas outlet of the carbon dioxide capture device; and the pyrolysis device includes a pyrolysis kettle and a vacuum pump which maintains a negative pressure state in the pyrolysis kettle.Type: GrantFiled: November 30, 2022Date of Patent: January 9, 2024Assignee: Central South UniversityInventors: Liyuan Chai, Qingwei Wang, Xiaobo Min, Qingzhu Li, Meiqing Shi
-
Patent number: 11866376Abstract: A method and apparatus for producing boron nitride nanotubes and continuous boron nitride nanotube yarn or tapes is provided. The apparatus includes rotating reaction tubes that allow for continuous chemical vapor deposition of boron nitride nanotubes. The rotation of the reaction tubes allows the boron nitride nanotubes to be spun into yarns or made into tapes, without post process or external rotation or spinning of the gathered nanotubes. Boron nitride nanotube yarns or tapes of great length can be produced as a result, thereby providing industry with a readily useable format for this type of material. Dopants such as carbon can be added to engineer the band gap of the nanotubes. Catalysts may be formed outside or inside the reactor.Type: GrantFiled: October 29, 2019Date of Patent: January 9, 2024Assignee: University of New HampshireInventors: David S. Lashmore, Tyler Bennett
-
Patent number: 11858820Abstract: A manganese carbide (Mn4C) magnetic material and a production method therefor are provided. According to one embodiment, the saturation magnetization of the Mn4C magnetic material increases with increasing temperature, and thus the Mn4C magnetic material is applicable to fields in which thermally induced magnetization reduction is critical.Type: GrantFiled: November 15, 2018Date of Patent: January 2, 2024Assignee: KOREA INSTITUTE OF MATERIALS SCIENCEInventors: Chul Jin Choi, Ping Zhan Si, Ji Hoon Park, Hui Dong Qian
-
Patent number: 11858825Abstract: A solution of acid deficient uranyl nitrate has a formula of UO2(OH)y(NO3)2-y, where y ranges from 0.1 to 0.5. The solution is prepared by placing UxOz in aqueous nitric acid to produce a uranium solution, wherein x is 1 to 3 and z is 2 to 8; placing the uranium solution under a pressure greater than atmospheric pressure in a sealed reaction chamber; and heating the uranium solution to a desired temperature of between 150° C. and 250° C. by applying microwave energy to the uranium solution. The uranium solution is maintained at the desired temperature under a pressure of from 5 atmospheres to 40 atmospheres for a hold time of 15 minutes to 6 hours to produce the desired acid deficient uranyl nitrate.Type: GrantFiled: November 4, 2020Date of Patent: January 2, 2024Assignee: X Energy, LLCInventors: Daniel Brown, Nicholas Linneen
-
Patent number: 11858827Abstract: A preparation method of a nanotube hierarchically structured lithium titanate includes the steps of: S1. dispersing a titanium source into an aqueous solution containing lithium hydroxide and hydrogen peroxide and stirring to obtain a mixed solution; S2. subjecting the mixed solution obtained in step S1 to a reaction by heating to obtain a precursor having a nanowire-like structure; S3. subjecting the precursor having a nanowire-like structure obtained in step S2 to separation and drying; S4. subjecting the precursor having a nanowire-like structure after separation and drying to a low-temperature annealing treatment; S5. subjecting the precursor having a nanowire-like structure after the low-temperature annealing treatment to a liquid thermal reaction to obtain the nanotube hierarchically structured lithium titanate. The method includes a simple process and easily controllable process parameters, and may be easily scaled-up for industrial production.Type: GrantFiled: August 29, 2019Date of Patent: January 2, 2024Assignee: PETROCHINA COMPANY LIMITEDInventors: Xu Jin, Jianming Li, He Liu, Hang Jiao, Xiaoqi Wang, Liang Sun, Xiaodan Liu
-
Patent number: 11845670Abstract: The present disclosure is directed to novel functionalized ionic liquids (ILs) that are used, for example, for enhanced recovery and separation of rare earth elements from aqueous solutions. The liquids and processes disclosed herein lead to greater separation efficiency, increased stability of separation materials, increased selectivity, and a reduced amount of waste materials.Type: GrantFiled: May 15, 2020Date of Patent: December 19, 2023Assignee: The Curators of the University of MissouriInventors: Mostafa Khodakarami, Lana Alagha
-
Patent number: 11840450Abstract: An exemplary hydrogen production apparatus 100 according to the present invention includes a grinding unit 10 configured to grind a silicon chip or a silicon grinding scrap 1 to form silicon fine particles 2, and a hydrogen generator 70 configured to generate hydrogen by causing the silicon fine particles 2 to contact with as well as disperse in, or to contact with or dispersed in water or an aqueous solution. The hydrogen production apparatus 100 can achieve reliable production of a practically adequate amount of hydrogen from a start material of silicon chips or silicon grinding scraps that are ordinarily regarded as waste. The hydrogen production apparatus thus effectively utilizes the silicon chips or the silicon grinding scraps so as to contribute to environmental protection as well as to significant reduction in cost for production of hydrogen that is utilized as an energy source in the next generation.Type: GrantFiled: May 7, 2021Date of Patent: December 12, 2023Assignee: NISSHIN KASEI CO., LTD.Inventors: Hikaru Kobayashi, Toru Higo, Yayoi Kanatani
-
Patent number: 11840447Abstract: The present disclosure provides systems and methods for processing ammonia. A heater may heat reformers, where the reformers comprise ammonia (NH3) reforming catalysts in thermal communication with the heater. NH3 may be directed to the reformers from storage tanks, and the NH3 may be decomposed to generate a reformate stream comprising hydrogen (H2) and nitrogen (N2). At least part of the reformate stream can be used to heat reformers. Additionally, the reformate stream can be directed to a hydrogen processing module such as a fuel cell.Type: GrantFiled: October 27, 2022Date of Patent: December 12, 2023Assignee: AMOGY Inc.Inventors: Young Suk Jo, Gregory Robert Johnson, Hyunho Kim
-
Patent number: 11834341Abstract: Provided are processes for the formation of electrochemically active materials such as lithiated transition metal oxides that solve prior issues with throughput and calcination. The processes include forming precursor materials into agglomerates prior to calcination. The use of the agglomerates improves gas flow into and out of the materials thereby improving calcination results, electrochemical properties of the resulting materials, and allows for use of high temperature kilns not previously suitable for such materials thereby lowering production costs.Type: GrantFiled: August 25, 2020Date of Patent: December 5, 2023Assignee: BASF CorporationInventors: William C. Mays, Diana Wong, Xue Liu, Benjamin Reichman, Martin L. Panchula, Gary A. Yacobian
-
Patent number: 11834333Abstract: A method of co-producing liquid hydrogen and ammonia, including a hydrogen generator, a nitrogen generator, and a HLU is presented. The method includes pressurizing a hydrogen stream from the hydrogen generator in a hydrogen compressor, dividing the pressurized hydrogen into at least a first portion and a second portion, wherein the first portion includes at least part of the flow of a first refrigeration cycle in the HLU, and the second part comprises at least part of the feed to an ammonia plant. The method also includes pressurizing a nitrogen stream from the nitrogen generator in a HP nitrogen compressor, dividing the pressurized nitrogen stream into at least a first part and a second part, wherein the first part comprises at least part of the flow of a second refrigeration cycle in the HLU, and the second part comprises at least part of the feed to the ammonia plant.Type: GrantFiled: April 21, 2021Date of Patent: December 5, 2023Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation Procédés Georges ClaudeInventors: Michael A. Turney, Alain Guillard, Joseph T. Stroffolino, IV
-
Patent number: 11834334Abstract: The present disclosure provides systems and methods for processing ammonia. A heater may heat reformers, where the reformers comprise ammonia (NH3) reforming catalysts in thermal communication with the heater. NH3 may be directed to the reformers from storage tanks, and the NH3 may be decomposed to generate a reformate stream comprising hydrogen (H2) and nitrogen (N2). At least part of the reformate stream can be used to heat reformers. Additionally, the reformate stream can be directed to a hydrogen processing module such as a fuel cell.Type: GrantFiled: October 27, 2022Date of Patent: December 5, 2023Assignee: AMOGY Inc.Inventors: Young Suk Jo, Gregory Robert Johnson, Hyunho Kim
-
Patent number: 11827524Abstract: A method for preparing a cathode active material precursor for a secondary battery, including: moving a co-precipitation filtrate generated after a co-precipitation reaction to a co-precipitation filtrate storage tank; removing a metal hydroxide by passing the co-precipitation filtrate through a filter; reacting the co-precipitation filtrate from which the metal hydroxide is removed with sulfuric acid or nitric acid to produce an ammonium sulfate or an ammonium nitrate while removing ammonia from the co-precipitation filtrate from which the metal hydroxide is removed; cooling and crystallizing the co-precipitation filtrate from which the metal hydroxide and ammonia are removed to precipitate a sodium sulfate; filtering the precipitated sodium sulfate to separate the precipitated sodium sulfate from the co-precipitation filtrate from which the metal hydroxide and ammonia are removed; drying the sodium sulfate separated from the co-precipitation filtrate and moving the co-precipitation filtrate separated from tType: GrantFiled: June 19, 2018Date of Patent: November 28, 2023Assignees: POSCO HOLDINGS INC., RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY, POSCO FUTURE M CO., LTD.Inventors: Ki Sung You, Hwang Yol Ryu
-
Patent number: 11827954Abstract: Disclosed herein are methods for preparing a hydraulic pre-concentrate enriched in rare earth elements and critical minerals, the method comprising: (a) contacting a raw material with a first base in an amount sufficient to adjust the pH to a value from about 4.0 to about 6.0, thereby forming a mixture comprising a first aqueous phase and a first solid concentrate; (b) separating the first aqueous phase from the first solid concentrate; (c) contacting the first aqueous phase with a second base in an amount sufficient to adjust the pH to a value from about 7.0 to about 9.0, thereby forming a mixture comprising a second aqueous phase and the hydraulic pre-concentrate; (d) removing the second aqueous phase and collecting the hydraulic pre-concentrate; wherein the raw material comprises rare earth elements; and wherein the hydraulic pre-concentrate is enriched in rare earth elements.Type: GrantFiled: July 28, 2022Date of Patent: November 28, 2023Assignee: West Virginia UniversityInventors: Paul F. Ziemkiewicz, James Constant, David K. Hoffman, John D. Quaranta
-
Patent number: 11821054Abstract: A method for recovering valuable elements from pre-combustion coal-based materials includes the steps of grinding the materials to a predetermined size, roasting the ground materials at a temperature of 600° C.-700° C. for a predetermined residence time needed for mineral decomposition, submerging the roasted, ground materials in a solution of lixiviant, filtering the lixiviant solution to separate residual solids from a pregnant leach solution including the valuable elements and recovering and concentrating the valuable elements from the pregnant leach solution.Type: GrantFiled: March 27, 2020Date of Patent: November 21, 2023Assignee: University of Kentucky Research FoundationInventors: Rick Honaker, Wencai Zhang
-
Patent number: 11821105Abstract: The disclosure provides a silicon carbide seed crystal and a method of manufacturing a silicon carbide ingot. The silicon carbide seed crystal has a silicon surface and a carbon surface opposite to the silicon surface. A difference D between a basal plane dislocation density BPD1 of the silicon surface and a basal plane dislocation density BPD2 of the carbon surface satisfies the following formula (1), a local thickness variation (LTV) of the silicon carbide seed crystal is 2.5 ?m or less, and a stacking fault (SF) density of the silicon carbide seed crystal is 10 EA/cm2 or less: D=(BPD1?BPD2)/BPD1?25%??(1).Type: GrantFiled: July 27, 2021Date of Patent: November 21, 2023Assignee: GlobalWafers Co., Ltd.Inventor: Ching-Shan Lin
-
Patent number: 11814299Abstract: Embodiments of the present disclosure generally relate to the recovery and extraction of rare earth elements. More specifically, embodiments of the disclosure relate to methods for separating rare earth elements from coal, coal by-product(s), and/or coal-derived product(s). In an embodiment, a method of removing rare earth elements from a coal-derived product is provided. The method generally includes introducing supercritical CO2 to the coal ash to form a first mixture, introducing a first acid to the first mixture to form a second mixture, and removing a first composition from the second mixture, the first composition comprising the one or more rare earth elements.Type: GrantFiled: May 10, 2021Date of Patent: November 14, 2023Assignee: UNIVERSITY OF WYOMINGInventors: Maohong Fan, Zaixing Huang
-
Patent number: 11817224Abstract: A nuclear fuel powder production plant comprises a conversion installation (2) for the conversion of uranium hexafluoride (UF6) into uranium dioxide (UO2) having a hydrolysis reactor (4) for the conversion of UF6 into uranium oxyfluoride powder (UO2F2) and a pyrohydrolysis furnace (6) for converting the UO2F2 powder into UO2 powder. The nuclear fuel powder production plant also includes a packaging unit (20) for the UO2 powder comprising a filling station (22) having a chamber (26) for receiving a container (24) to be filled, a filling duct (28) supplied from the furnace (6) and a suction system (32) comprising a suction ring (34) disposed at the outlet (30) of the filling duct (28) for sucking an annular air flow (A) around a stream (P) of UO2 powder falling from the outlet (30) from the filling duct (28) into the container (24).Type: GrantFiled: October 9, 2018Date of Patent: November 14, 2023Assignee: FRAMATOMEInventors: Serge Perrin, Pascal Rouquette
-
Patent number: 11814287Abstract: A process and apparatus for producing a hydrogen-enriched product and recovering CO2 from an effluent stream from a hydrogen production process unit are described. The process utilizes a CO2 recovery system integrated with a PSA system that produces at least two product streams to recover additional hydrogen and CO2 from the tail gas stream of a hydrogen PSA unit in the hydrogen production process.Type: GrantFiled: October 22, 2021Date of Patent: November 14, 2023Assignee: UOP LLCInventors: Addison Cruz, Bradley Russell, Erick J. Bennett, III, Kurt Kraus, Stefano Bietto, William Cady, Kyle Cuellar, Oluwaseyi Kayode