Patents Examined by Steven Whitesell Gordon
  • Patent number: 11953838
    Abstract: Apparatus for and method of removing a contaminant from a working surface of a lithography support such as a reticle or wafer stage in an EUV or a DUV photolithography system in which a cleaning substrate provided with a coating made a selected material and configuration is pressed against the working surface so that the contaminant is transferred from the working surface to the coating.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: April 9, 2024
    Assignee: ASML Holding N.V.
    Inventors: Keane Michael Levy, Akshay Dipakkumar Harlalka
  • Patent number: 11953835
    Abstract: Method of exposing a substrate by a patterned radiation beam, comprising: —providing a radiation beam; —imparting the radiation beam by an array of individually controllable elements; —generating, from the radiation beam, a patterned radiation beam, by tilting the individually controllable elements between different positions about a tilting axis; —projecting the patterned radiation beam towards a substrate; —scanning a substrate across the patterned radiation beam in a scanning direction so as to expose the substrate to the patterned radiation beam, whereby the tilting axis of the individually controllable elements is substantially perpendicular to the scanning direction.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: April 9, 2024
    Assignee: ASML NETHERLANDS B.V.
    Inventor: Erwin John Van Zwet
  • Patent number: 11953836
    Abstract: A reticle transport system having a magnetically levitated transportation stage is disclosed. Such a system may be suitable for use in vacuum environments, for example, ultra-clean vacuum environments. A magnetic levitated linear motor functions to propel the transportation stage in a linear direction along a defined axis of travel and to magnetically levitate the transportation stage.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: April 9, 2024
    Assignees: Massachusetts Institute of Technology, ASML Netherlands B.V.
    Inventors: Lei Zhou, David L. Trumper, Ruvinda Gunawardana
  • Patent number: 11940740
    Abstract: In a lithographic process, product units such as semiconductor wafers are subjected to lithographic patterning operations and chemical and physical processing operations. Alignment data or other measurements are made at stages during the performance of the process to obtain object data representing positional deviation or other parameters measured at points spatially distributed across each unit. This object data is used to obtain diagnostic information by performing a multivariate analysis to decompose a set of vectors representing the units in the multidimensional space into one or more component vectors. Diagnostic information about the industrial process is extracted using the component vectors. The performance of the industrial process for subsequent product units can be controlled based on the extracted diagnostic information.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: March 26, 2024
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Alexander Ypma, Jasper Menger, David Deckers, David Han, Adrianus Cornelis Matheus Koopman, Irina Lyulina, Scott Anderson Middlebrooks, Richard Johannes Franciscus Van Haren, Jochem Sebastiaan Wildenberg
  • Patent number: 11914302
    Abstract: A lithography method in semiconductor fabrication is provided. The method includes generating a plurality of drops of a target material through a plurality of nozzles, adjacent two of the plurality of nozzles having a distance less than a width of a first one of the adjacent two of the plurality of nozzles, wherein the plurality of drops are aggregated to an elongated droplet; generating a laser pulse to convert the elongated droplet into plasma that generates an extreme ultraviolet (EUV) radiation; exposing a semiconductor substrate to the EUV radiation.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: February 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Hung Liao, Yueh-Lin Yang
  • Patent number: 11899221
    Abstract: An apparatus and a method for assembling optical module. The apparatus includes: a plurality of fixtures, an alignment mechanism, a power supply, a spectroscopic prism with a light incident surface close to the plurality of optical modules to be aligned, a first color image collecting means close to a first light emitting surface of the spectroscopic prism and a second color image collecting means with a second light emitting surface of the spectroscopic prism; the controller is configured to determine a light spot that does not meet a quality requirement according to the positions and/or sizes of the plurality of imaging light spots, and generate a corresponding aligning instruction, and determine a to-be-assembled lens necessary to be adjusted according to a color of the light spot that does not meet quality requirements, and output the aligning instruction to an alignment mechanism to adjust a position of the lens necessary to be adjusted.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: February 13, 2024
    Assignee: GOER OPTICAL TECHNOLOGY CO., LTD.
    Inventors: Nanjing Dong, Debo Sun
  • Patent number: 11899378
    Abstract: A lithography system includes a collector having a mirror surface, a laser generator aiming at an excitation zone in front of the mirror surface of the collector, a droplet generator, and a droplet deflector operative to apply a force at a position between the droplet generator and the excitation zone.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Hung Liao, Min-Cheng Wu
  • Patent number: 11887881
    Abstract: A method of fabricating a substrate table includes supporting a table base and disposing a coating on a surface of the table base. The surface of the table base is substantially flat. The coating has a non-uniform thickness. The coating exerts a stress on the table so as to bend the table base. The non-uniform thickness causes a surface of the coating to become substantially flat after the bending.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: January 30, 2024
    Assignee: ASML HOLDING N.V.
    Inventors: Bruce Tirri, Ping Zhou, Elizabeth Mary Stone, David Hart Peterson, Mehmet Ali Akbas, Ryan Mayer, Richard Bryan Lewis
  • Patent number: 11880141
    Abstract: A method of measuring misregistration in the manufacture of semiconductor device wafers including providing a multilayered semiconductor device wafer including at least a first layer and a second layer including at least one misregistration measurement target including a first periodic structure formed together with the first layer having a first pitch and a second periodic structure formed together with the second layer having a second pitch, imaging the first layer and the second layer at a depth of focus and using light having at least one first wavelength that causes images of both the first layer and the second layer to appear in at least one plane within the depth of focus and quantifying offset in the at least one plane between the images of the first layer and the second layer, thereby to calculate misregistration of the first layer and the second layer.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: January 23, 2024
    Assignee: KLA CORPORATION
    Inventors: Daria Negri, Amnon Manassen, Gilad Laredo
  • Patent number: 11880144
    Abstract: An object table configured to hold an object on a holding surface, the object table including: a main body; a plurality of burls extending from the main body, end surfaces of the burls defining the holding surface; an actuator assembly; and a further actuator assembly, wherein the actuator assembly is configured to deform the main body to generate a long stroke out-of-plane deformation of the holding surface based on shape information of the object that is to be held and the further actuator assembly is configured to generate a short stroke out-of-plane deformation of the holding surface.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: January 23, 2024
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Sander Jeroen Hermanussen, Johannes Petrus Martinus Bernardus Vermeulen, Hans Butler, Bas Jansen, Michael Marinus Anna Steur
  • Patent number: 11867501
    Abstract: A system for calibrating an equipment, the system including a beam splitter; a first reticle configured to be removably attached to the equipment; and an image capture device including an image plane, wherein an image of the first reticle is configured to be received by way of the beam splitter at the image plane along an optical axis of the beam splitter, wherein the orientation as indicated by the first reticle is compared to an orientation of the image plane and if the orientation as indicated by the first reticle differs from the orientation of the image plane, the equipment is rotated about the optical axis of the beam splitter such that the orientation as indicated by the first reticle matches the orientation of the image plane.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: January 9, 2024
    Assignee: MLOptic Corp.
    Inventors: Pengfei Wu, Wei Zhou, Jiang He, Siyuan Liang
  • Patent number: 11868051
    Abstract: Conventional optical lithography uses masks with static patterns that are expensive and labor intensive to produce. The present disclosure is directed to a programmable optical lithography mask with an array of cells that use a hydrogen-mediated mechanism to tune their optical properties (e.g., transmission, absorption, refractive index, and/or reflectivity) dynamically and reversibly. Each cell in the programmable mask may be individually addressable to produce a large variety of patterns. The programmable mask may be configured for ultra-fine spatial resolution or coarse spatial resolution, facilitating a wide range of applications. The programmable mask may be stable against short wavelength light, such as broadband ultraviolet (UV) light, and can thus act as a light valve for short wavelength light.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: January 9, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Aik Jun Tan, Mantao Huang, Geoffrey S. D. Beach
  • Patent number: 11860549
    Abstract: A method for determining a correction for control of at least one manufacturing apparatus used in a manufacturing process for providing structures to a region on a substrate, the region including a plurality of sub-regions. The method includes obtaining measurement data relating to a process parameter of the manufacturing process for the region; and determining a correction for the manufacturing apparatus based on the measurement data. The correction is configured to maintain the process parameter within a specified range across a boundary between two of the sub-regions and/or to better correct the process parameter across the boundary between two of the sub-regions with respect to within the remainder of the region.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: January 2, 2024
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Wolter Siemons, Daan Maurits Slotboom, Erik Peter De Kort
  • Patent number: 11852979
    Abstract: An edge exposure tool may include a lens adjustment device that is capable of automatically adjusting various parameters of an edge exposure lens to account for changes in operating parameters of the edge exposure tool. In some implementations, the edge exposure tool may also include a controller that is capable of determining edge adjustment parameters for the edge exposure lens and exposure control parameters for the edge exposure tool using techniques such as big data mining, machine learning, and neural network processing. The lens adjustment device and the controller are capable of reducing and/or preventing the performance of the edge exposure tool from drifting out of tolerance, which may maintain the operation performance of the edge exposure tool and reduce the likelihood of wafer scratching, and may reduce the down-time of the edge exposure tool that would otherwise be caused by cleaning and calibration of the edge exposure lens.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yong-Ting Wu, Yu Kai Chen
  • Patent number: 11841622
    Abstract: A method of overlay error measurement includes disposing a reference pattern module over a substrate. The substrate includes first and second overlay measurement patterns in first and second locations. The reference pattern module includes first and second reference patterns. The method includes creating a first overlap of the first reference pattern with the first overlay measurement pattern and a second overlap of the second reference pattern with the second overlay measurement pattern. The method further includes determining a first overlay error between the first reference pattern of the reference pattern module and the first overlay measurement pattern of the substrate and determining a second overlay error between the second reference pattern and the second overlay measurement pattern. The method also includes determining a total overlay error between the first and second overlay measurement patterns of the substrate based on the first and second overlay errors.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Chih Hsieh, Yen-Liang Chen
  • Patent number: 11829082
    Abstract: A method for a lithography exposure process is provided. The method includes irradiating a target droplet with a laser beam to create an extreme ultraviolet (EUV) light. The method further includes reflecting the EUV light with a collector. The method also includes discharging a cleaning gas over the collector through a gas distributor positioned next to the collector. A portion of the cleaning gas is converted to free radicals before the cleaning gas leaves the gas distributor, and the free radicals are discharged over the collector along with the cleaning gas.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: November 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shang-Ying Wu, Shang-Chieh Chien, Bo-Tsun Liu, Li-Jui Chen, Po-Chung Cheng
  • Patent number: 11822255
    Abstract: A method including obtaining (i) measurements of a parameter of the feature, (ii) data related to a process variable of a patterning process, (iii) a functional behavior of the parameter defined as a function of the process variable based on the measurements of the parameter and the data related to the process variable, (iv) measurements of a failure rate of the feature, and (v) a probability density function of the process variable for a setting of the process variable, converting the probability density function of the process variable to a probability density function of the parameter based on a conversion function, where the conversion function is determined based on the function of the process variable, and determining a parameter limit of the parameter based on the probability density function of the parameter and the measurements of the failure rate.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: November 21, 2023
    Assignee: ASML Netherlands B.V.
    Inventors: Abraham Slachter, Stefan Hunsche, Wim Tjibbo Tel, Anton Bernhard Van Oosten, Koenraad Van Ingen Schenau, Gijsbert Rispens, Brennan Peterson
  • Patent number: 11809087
    Abstract: Some implementations described herein provide an exposure tool and associated methods of operation in which a scanner control system generates a scanner route for an exposure recipe such that the distance traveled by a substrate stage of the exposure tool along the scanner route is reduced and/or optimized for non-exposure fields on a semiconductor substrate. In this way, the scanner control system increases the productivity of the exposure tool, reduces processing times of the exposure tool, and increases yield in a semiconductor fabrication facility in which the exposure tool is included.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Chieh Chang, Kai-Fa Ho, Li-Jui Chen, Heng-Hsin Liu
  • Patent number: 11789369
    Abstract: An immersion lithographic apparatus is disclosed in which at least a part of the liquid supply system (which provides liquid between the projection system and the substrate) is moveable in a plane substantially parallel to a top surface of the substrate during scanning. The part is moved to reduce the relative velocity between that part and the substrate so that the speed at which the substrate may be moved relative to the projection system may be increased.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: October 17, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Martinus Hendrikus Antonius Leenders, Nicolaas Rudolf Kemper, Joost Jeroen Ottens
  • Patent number: 11782350
    Abstract: A lithography system includes a table body, a wafer stage, a first sliding member, a second sliding member, a first cable, a first bracket, a rail guide, and a first protective film. The first sliding member is coupled to the wafer stage. The second sliding member is coupled to an edge of the table body, in which the first sliding member is coupled to a track of the second sliding member. The first bracket fixes the first cable, the first bracket being coupled to a roller structure, in which the roller structure includes a body and a wheel coupled to the body. The rail guide confines a movement of the wheel of the roller structure. The first protective film is adhered to a surface of the rail guide, in which the roller structure is moveable along the first protective film on the surface of the rail guide.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: October 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shao-Hua Wang, Chueh-Chi Kuo, Kuei-Lin Ho, Zong-You Yang, Cheng-Wei Sun, Wei-Yuan Chen, Cheng-Chieh Chen, Heng-Hsin Liu, Li-Jui Chen