Patents Examined by Suryaprabha Chunduru
  • Patent number: 10767208
    Abstract: The invention provides compositions and methods for making closed nucleic acid structures in which one or both strands are continuous. The closed nucleic acid structures can be used as sequencing templates among other applications.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: September 8, 2020
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Norman C. Nelson, Jijumon Chelliserry, Steven T. Brentano, Dmitry Lyakhov, Matthew C. Friedenberg, Anne-Laure Shapiro
  • Patent number: 10718007
    Abstract: A system and method for capturing and analyzing a set of cells, comprising: an array including a set of parallel pores, each pore including a chamber including a chamber inlet and a chamber outlet, and configured to hold a single cell, and a pore channel fluidly connected to the chamber outlet; an inlet channel fluidly connected to each chamber inlet of the set of parallel pores; an outlet channel fluidly connected to each pore channel of the set of parallel pores; a set of electrophoresis channels fluidly coupled to the outlet channel, configured to receive a sieving matrix for electrophoretic separation; and a set of electrodes including a first electrode and a second electrode, wherein the set of electrodes is configured to provide an electric field that facilitates electrophoretic analysis of the set of cells.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: July 21, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kalyan Handique, Priyadarshini Gogoi, Saedeh Sepehri Javdani, Yi Zhou
  • Patent number: 10626467
    Abstract: Disclosed are nucleic acid oligomers, including amplification oligomers, detection probes, and combinations thereof, for detection of one or more gastrointestinal pathogens selected from Salmonella, Shigella, Campylobacter jejuni, and Campylobacter coli. Also disclosed are methods of specific nucleic acid amplification and detection, including multiplex assays, using the disclosed oligomers, as well as corresponding reaction mixtures and kits.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: April 21, 2020
    Assignee: Gen-Probe Incorporated
    Inventor: Ejan Tyler
  • Patent number: 10597711
    Abstract: A method for nucleic acid sequencing includes: disposing a plurality of template polynucleotide strands, sequencing primers, and polymerases in a plurality of defined spaces of a sensor array; exposing template polynucleotide strands to a series of flows of nucleotide species, the series comprising a sequence of random flows; and obtaining, for each of the series of flows of nucleotide species, a signal indicative of how many nucleotide incorporations occurred for that particular flow to determine a predicted sequence of nucleotides corresponding to the template polynucleotide strands.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: March 24, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Earl Hubbell, Jonathan Schultz
  • Patent number: 10597698
    Abstract: This application provides fluidic devices, such as microfluidic devices, which can be used for the creation and/or manipulation of droplets in droplet-based microfluidic systems, as well as systems and methods for using the same. The microfluidic devices can be used to generate droplets, extract or inject volume to droplets, and/or split droplets. Also provided are methods for generating nucleosomes, and isolated DNA from nucleosomes (or from non-nucleosomes), for example using the disclosed devices.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: March 24, 2020
    Assignees: The Board of Trustees of the University of Illinois, Mayo Foundation for Medical Education and Research
    Inventors: Ryan Bailey, Joshua Tice, Tamas Ordog, Jeong Heon Lee, Richard Martin Graybill, Yi Xu, Steven Doonan
  • Patent number: 10584377
    Abstract: Provided herein is technology relating to sequencing nucleic acids and particularly, but not exclusively, to methods, compositions, and systems for sequencing a nucleic acid using one or more labels and signal amplitude to distinguish bases.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: March 10, 2020
    Assignee: IBIS BIOSCIENCES, INC.
    Inventor: Mark W. Eshoo
  • Patent number: 10577647
    Abstract: Methods and compositions for nucleic acid amplification, detection, and genotyping techniques are disclosed. In one embodiment, a nucleic acid molecule having a target-specific primer sequence; an anti-tag sequence 5? of the target-specific primer sequence; a tag sequence 5? of the anti-tag sequence; and a blocker between the anti-tag sequence and the tag sequence is disclosed. Compositions containing such a nucleic acid molecule and methods of using such a nucleic acid molecule are also disclosed.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: March 3, 2020
    Assignee: LUMINEX CORPORATION
    Inventors: Douglas F. Whitman, Hongwei Zhang
  • Patent number: 10563246
    Abstract: A microfluidic device and method for producing and collecting single droplets of a first fluid, the device including a microfluidic platform having at least a droplet microchannel wherein is produced a flow of single droplets of the first fluid dispersed in a second fluid immiscible with the first fluid, the droplet microchannel having at least one inlet extremity and at least one outlet extremity for distributing the flow of droplets, the device further including: a collection device including a plurality of receiving areas adapted to collect at least one of the droplets, elements for changing the relative position of the collection device and the outlet of the microfluidic platform, elements for controlling the flow of droplets, and elements for synchronizing the flow of droplets at the outlet of the droplet microchannel and the relative movement of the collection device with regards to the microfluidic platform.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: February 18, 2020
    Assignee: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Marie-Claude Potier, Patrick Tabeling, Luce Dauphinot, Nadege Bois, Fabrice Monti, Pascaline Mary
  • Patent number: 10544454
    Abstract: Provided herein is technology relating to sequencing nucleic acids and particularly, but not exclusively, to methods, compositions, and systems for sequencing a nucleic acid using two or more labels and signal ratios to distinguish bases.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: January 28, 2020
    Assignee: IBIS BIOSCIENCES, INC.
    Inventor: Mark W. Eshoo
  • Patent number: 10538760
    Abstract: This disclosure provides for methods and reagents for rapid multiplex RPA reactions and improved methods for detection of multiplex RPA reaction products. In addition, the disclosure provides new methods for eliminating carryover contamination between RPA processes.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: January 21, 2020
    Assignee: ALERE SAN DIEGO, INC.
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes
  • Patent number: 10520462
    Abstract: An electrochemical screening method for the selection of DNA aptamers against 11-deoxycortisol (11-DCL) using gold electrode for target immobilization is described. The gold electrode is used as solid matrix instead of the beads for SELEX. The selection steps (SELEX) are performed on the 11-DC modified electrode directly as the DNA library in the first round or the enriched DNA pools in the subsequent rounds were incubated on the electrode, then the unbound DNA is washed and the bound DNA is measured directly by square wave voltammetry. Then elution of the bound DNA is performed for further use.
    Type: Grant
    Filed: November 24, 2018
    Date of Patent: December 31, 2019
    Assignee: Alfaisal University
    Inventors: Shimaa Eissa, Mohammed Zourob, Raja Chinnappan, Ayesha Siddiqua
  • Patent number: 10501784
    Abstract: The present disclosure relates to the amplification of target nucleic acid sequences for various sequencing and/or identification techniques. The use of these primers, as described herein, allows for the reduction in the amplification of nonspecific hybridization events (such as primer dimerization) while allowing for the amplification of the target nucleic acid sequences.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: December 10, 2019
    Assignee: Life Technologies Corporation
    Inventors: Kai Lao, Neil Straus, Nanlan Xu
  • Patent number: 10494676
    Abstract: The present invention relates to an in vitro process for the diagnosis of prostate cancer and other tumor types in exosomes obtained from a body fluid which comprises a) concentrating the exosomes and other extracellular vesicles from a body fluid of a patient, b) extraction of total RNA from the exosomes obtained in step a), c) conversion of the RNA obtained in step b) to cDNA, d) amplification of the cDNA obtained in step c) with a polymerase chain reaction whereby primers derived from the AGR2 nucleotide sequence or the complement thereof are used, and e) determining whether in the amplification product variants of the AGR2 gene can be identified.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: December 3, 2019
    Assignees: Albert-Ludwigs-Universitaet Freiburg, Karlsruher Institut Für Technologie
    Inventors: Irina Nazarenko, Andrew Cato, Antje Neeb, Stefanie Bormann, Martin Schoenthaler, Arkadiusz Miernik, Malte Kroenig, Konrad Wilhelm, Benjamin Haenselmann, Simon Hefele
  • Patent number: 10450597
    Abstract: Aspects of the technology disclosed herein relate to methods for preparing and analyzing nucleic acids. In some embodiments, methods for preparing nucleic acids for sequence analysis (e.g., using next-generation sequencing) are provided herein.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: October 22, 2019
    Assignees: THE GENERAL HOSPITAL CORPORATION, ARCHERDX, INC.
    Inventors: Anthony John Iafrate, Long Phi Le, Zongli Zheng, Jason Myers, Joshua Stahl
  • Patent number: 10415092
    Abstract: Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: September 17, 2019
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Steven T. Brentano, Dmitry Lyakhov, James D. Carlson, Norman C. Nelson, Lyle J. Arnold, Michael M. Becker
  • Patent number: 10407723
    Abstract: Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: September 10, 2019
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Steven T. Brentano, Dmitry Lyakhov, James D. Carlson, Norman C. Nelson, Lyle J. Arnold, Michael M. Becker
  • Patent number: 10202608
    Abstract: Certain aspects of the present invention provide methods for assembling nucleic acid molecules using iterative activation of one or more vector-encoded traits to progressively assemble a longer nucleic acid insert. Aspects of the invention also provide kits, compositions, devices, and systems for assembling synthetic nucleic acids using iterative activation of one or more vector-encoded traits.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 12, 2019
    Assignee: Gen9, Inc.
    Inventor: William J. Blake
  • Patent number: 10202642
    Abstract: Provided herein is technology relating to sequencing nucleic acids and particularly, but not exclusively, to methods, compositions, systems, and kits for sequencing a nucleic acid using a degenerate two-base code. Particular embodiments provide: 1) that the two-base degenerate code relates a first element to a base comprising adenine (A) or guanine (G) and a second element to a base comprising cytosine (C) or thymine (T); 2) that the two-base degenerate code relates a first element to a base comprising A or C and a second element to a base comprising G or T; and 3) that the two-base degenerate code relates a first element to a base comprising G or C and a second element to a base comprising A or T.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: February 12, 2019
    Assignee: IBIS BIOSCIENCES, INC.
    Inventor: Mark W. Eshoo
  • Patent number: 10196684
    Abstract: The present invention relates to assays, including amplification assays, conducted in the presence of modulators. These assays can be used to detect the presence of particular nucleic acid sequences. In particular, these assays can allow for genotyping or other genetic analysis.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: February 5, 2019
    Assignee: California Institute of Technology
    Inventors: Rustem F. Ismagilov, Bing Sun, Jesus Rodriguez Manzano, Eugenia Khorosheva, Matthew S. Curtis
  • Patent number: 10196692
    Abstract: A polynucleotide comprising at least the final six nucleotides of one of the following primer sequences, or a sequence complementary thereto: SEQ. ID NOS. 3 to 16, 18, 20 to 33, 35 or 37 to 39. A method of detecting the presence or absence of a mutation in the PIK3CA gene, wherein the mutation is one of H1047R, H1047L, E542K and E545K, and preferably ARMS primers are combined with Scorpion primers.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: February 5, 2019
    Assignee: QIAGEN MANCHESTER LIMITED
    Inventors: Ruth Board, Jennifer Haworth, Paul Francis Ravetto, Nicola Jo Thelwell, David Whitcombe