Patents Examined by Susan Thai
  • Patent number: 8182666
    Abstract: Particles of interest, such as DNA molecules, are injected into a medium by applying a first field. Once in the medium the particles are concentrated by applying one or more fields that cause mobilities of the particles in the medium to vary in a manner that is correlated with motions of the particles. Particle injection and particle concentration may be performed concurrently or in alternation.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: May 22, 2012
    Assignee: The University of British Columbia
    Inventors: Andrea Marziali, David Broemeling
  • Patent number: 8177958
    Abstract: An electro-chemical sensor is described having one or more redox species sensitive to a certain analyte and one or more redox species that are insensitive to that analyte, for the purpose of making measurements in a downhole environment in aquifers or oilfield reservoirs.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: May 15, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Nathan Lawrence, Andrew Meredith, Markus Pagels
  • Patent number: 8163163
    Abstract: A method of electrochemical analysis using a sensor electrode specific for an analyte under test. The method comprises immersing the sensor electrode in a sample solution suspected of containing the analyte; forming an electrochemically active complex by exposure to solutions containing secondary receptors or competing molecules labelled with a charged or enzyme label; and subsequently exposing the sensor to an electrochemically active solution. The measurement step comprises driving the sensor electrode potential to a predetermined fixed potential by applying a current or activation waveform then monitoring the potential difference between the sensor electrode and a reference electrode following removal of the holding current. Current, rate and potential can all be measured and used to determine analyte concentration or sensor state.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 24, 2012
    Assignee: Sensortec Limited
    Inventor: Duncan Ross Purvis
  • Patent number: 8152980
    Abstract: A method and an article of an electrically conductive ceramic interconnect bonded to a compatible ceramic housing for an oxygen partial pressure sensor system. The interconnect includes a LaxSryAlzMn1?zO3 (LSAM) having a stoichiometry enabling good electrical conductivity at high temperatures and the LSAM also bonded to a yttria stabilized zirconia forming a stable and durable seal.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: April 10, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Dileep Singh, Jules Routbort, Prabir Dutta, John V. Spirig
  • Patent number: 8152992
    Abstract: Methods and compositions for the reliable detection of chemical stimuli using a “nose-on-a-chip” are presented. The invention uses cells sensitive to chemical stimuli and detects and processes the signals given by the cells upon contact with chemical stimuli.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: April 10, 2012
    Assignee: University of Maryland
    Inventors: Elisabeth Smela, Pamela Ann Abshire
  • Patent number: 8128791
    Abstract: In a copper electroplating apparatus having separate anolyte and catholyte portions, the concentration of anolyte components (e.g., acid or copper salt) is controlled by providing a diluent to the recirculating anolyte. The dosing of the diluent can be controlled by the user and can follow a pre-determined schedule. For example, the schedule may specify the diluent dosing parameters, so as to prevent precipitation of copper salt in the anolyte. Thus, precipitation-induced anode passivation can be minimized.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: March 6, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Bryan Buckalew, Jonathan Reid, John Sukamto, Zhian He, Seshasayee Varadarajan, Steven T. Mayer
  • Patent number: 8114268
    Abstract: A method and system that enables a user to maintain a sensor in real time. The present invention involves performing a diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure to measure sensor impedance value in order to determine if the sensor is operating at an optimal level. If the sensor is not operating at an optimal level, the present invention may further involve performing a sensor remedial action. The sensor remedial action involves reversing the DC voltage being applied between the working electrode and the reference electrode. The reversed DC voltage may be coupled with an AC voltage to extend its reach.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: February 14, 2012
    Assignee: Medtronic Minimed, Inc.
    Inventors: Lu Wang, Rajiv Shah
  • Patent number: 8114269
    Abstract: According to an embodiment of the invention, a method of determining hydration of a sensor having a plurality of electrodes is disclosed. In particular embodiments, the method couples a sensor electronics device to the sensor and measures the open circuit potential between at least two of the plurality of electrodes. Then, the open circuit potential measurement is compared to a predetermined value. In some embodiments, the plurality of electrodes includes a working electrode, a reference electrode, and a counter electrode. In still further embodiments, the open circuit potential between the working electrode and the reference electrode is measured. In other embodiments, the open circuit potential between the working electrode and the counter electrode is measured. In still other embodiments, the open circuit potential between the counter electrode and the reference electrode is measured.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: February 14, 2012
    Assignee: Medtronic Minimed, Inc.
    Inventors: Kenneth W. Cooper, David Y. Choy, Rajiv Shah, Gopikrishnan Soundararajan, Ratnakar Vejella
  • Patent number: 8114259
    Abstract: An electrically-driven separation apparatus can be used with a pressure-driven separation apparatus to provide potable water having a desired total dissolved solids (TDS).
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: February 14, 2012
    Assignee: Siemens Industry, Inc.
    Inventors: Joseph E. Zuback, Gary C. Ganzi, Evgeniya Freydina, Anil D. Jha, Li-Shiang Liang, Frederick C. Wilkins
  • Patent number: 8097138
    Abstract: The present invention provides oxygen partial pressure control apparatuses that can control the partial pressure of oxygen in atmospheric gases in processing apparatuses or the like to within the range of 0.2 to 10?30 atm, while maintaining low material and operational cost conditions.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: January 17, 2012
    Assignee: National Institute of Agrobiological Sciences
    Inventors: Naoki Shirakawa, Shinichi Ikeda, Katsuhide Uchida
  • Patent number: 8083921
    Abstract: An electrode for high overvoltage oxygen anodic evolution is described comprising a substrate of titanium or other valve metal, a first protective interlayer containing valve metal oxides, a second interlayer containing platinum or other noble metal, and an outer layer comprising tin, copper and antimony oxides. The electrode of the invention may be employed as anode in waste water treatment.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: December 27, 2011
    Assignee: Industrie de Nora S.p.A.
    Inventor: Paolo Rossi
  • Patent number: 8083926
    Abstract: The present invention provides a novel biosensor and measuring method. The novel biosensor of the present invention comprises an electrode having a nanopore structured and catalytically active cyclodextrin attached thereto. The biosensor of the present invention has demonstrated robust analytical performance for direct glucose measurement without mediators or without using native enzyme, which is especially beneficial in the hypoglycemia range.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: December 27, 2011
    Inventor: Ellen T. Chen
  • Patent number: 8075758
    Abstract: Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: December 13, 2011
    Assignee: Ceramatec, Inc.
    Inventors: Ashok V. Joshi, Shekar Balagopal, Justin Pendelton
  • Patent number: 8075753
    Abstract: The gas sensor includes a sensor element, a heater for heating the sensor element, the heater having a roughly cylindrical shape, a housing into which the sensor element is inserted to be held therein, and a terminal unit disposed so as to cover a rear end portion of the heater on a rear end side of the housing. The terminal unit includes a pair of insulators, a pair of metal terminals each of which is located inside a corresponding one of the pair of the insulators and in contact with a corresponding one of a pair of electrode pads provided on a surface of the rear end portion of the heater, and a pressing member pressing the pair of the insulators in a direction that the pair of the insulators approach each other. The pair of the insulators are located out of contact with each other. The rear end portion of the heater is contact-supported at at least three contact points by the terminal unit.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: December 13, 2011
    Assignee: Denso Corporation
    Inventor: Masanobu Yamauchi
  • Patent number: 8052862
    Abstract: A limiting current type oxygen sensor having a gas diffusion mechanism comprising a gas diffusion bore and an internal space communicating with the gas diffusion bore for supplying a diffusion-rate-determined gas. The gas diffusion mechanism may be configured such that an oxygen concentration gradient within the internal space satisfies the expression: 1/Ilim=(1/4 FDCo2){(l/S)+(lin/Sin)} based on the Faraday constant (F); a diffusion coefficient (D); an oxygen concentration (Co2); a bore area (S) of the gas diffusion bore; a bore length (l) in the axial direction of the gas diffusion bore; a distance (lin) in the internal space between the first electrode and the inner surface opposed thereto; an effective cross section (Sin) of the internal space; and an output current value (Ilim). This makes it possible to accurately sense and measure the oxygen concentration, even at low oxygen concentrations, and achieve easy producibility and cost reducibility.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: November 8, 2011
    Assignee: Fujikura Ltd.
    Inventors: Ryouji Nagano, Yukio Matsuki, Seiki Kato, Hitoshi Taimatsu
  • Patent number: 8052855
    Abstract: A carbon nanotube (“CNT”) gas sensor includes a substrate, an insulating layer formed on the substrate, electrodes formed on the insulating layer, and CNT barriers that protrude higher than the electrodes in spaces between the electrodes to form gas detecting spaces. A method of manufacturing the gas sensor includes forming an insulating layer on a substrate, forming an electrode pattern on the insulating layer, coating CNT paste having a thickness greater than a thickness of electrodes in the electrode pattern on the electrodes and the insulating layer, and patterning and firing the carbon nanotube paste, including using a photolithography method, to retain only portions of the CNT paste coated on spaces between the electrodes.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-im Han, Soo-hyung Choi, Jeong-hee Lee, Soo-suk Lee, Jeong-na Heo
  • Patent number: 8043489
    Abstract: The multi-layer strip for use in measuring biological material and the system for measuring a biological material are provided, wherein the multi-layer strip includes a stack of a plurality of strips, each having a flow channel and a reaction unit, and the strips may react with specific materials contained in a biological material injected into the multi-layer strip. Thus, it is possible to quantitatively analyze various materials contained in a biological material and to optically and electrochemically measure and quantitatively analyze various materials in a biological material.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: October 25, 2011
    Assignee: LG Electronics Inc.
    Inventors: Seok Jung Hyun, Kyung Hoo Moon, Kyu Sik Yun, Yeon Jae Kang, Guei Sam Lim, Gyoung Soo Kim
  • Patent number: 8043662
    Abstract: To provide a solder-plating film which has good solder wettability and with which discoloration and twisting of the tin film after heat treatment are prevented. A method and a solution for surface treating a tin film are disclosed. The aqueous solution contains specific compounds and is brought into contact with a tin-plating film before reflow treatment of the tin film.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: October 25, 2011
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventor: Masanori Orihashi
  • Patent number: 8034227
    Abstract: The invention relates to a process for the production of alkali metal chlorate comprising: providing an electrochemical cell comprising an anode and a cathode in separate anode and cathode compartments; contacting the cathode with an electrolyte comprising at least one organic mediator and one or more organic or mineral acids; reacting the organic mediator at the cathode to form at least one reduced form of the mediator; reacting the at least one reduced form of the mediator with oxygen to form hydrogen peroxide; contacting the anode with an anolyte comprising alkali metal chloride; reacting chloride at the anode to form chlorine that is hydrolyzed; and, reacting the hydrolyzed chlorine to form chlorate.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: October 11, 2011
    Assignee: Akzo Nobel N.V.
    Inventors: Magnus Rosvall, Rolf Edvinsson Albers
  • Patent number: 8025789
    Abstract: An electrochemical method for measuring the concentration of an anionically-charged and non-electroactive polymer in an aqueous solution is provided. The method comprises immobilizing a cationic dye material on an electrically conductive substrate form a working electrode; contacting the working electrode with the aqueous solution including the anionically-charged and non-electroactive polymer to be measured, and transmitting electrical power to the working electrode; measuring a current of the working electrode under a determined electric potential; and calculating a concentration or quantity of the anionically-charged polymer in the aqueous solution according to the measured current of the working electrode.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: September 27, 2011
    Assignee: General Electric Company
    Inventors: Jianyun Liu, Zhixin Zheng, Yangang Liang, Wei Cai, Su Lu, Li Zhang