Patents Examined by Susan Thai
  • Patent number: 8012324
    Abstract: A sensor element including: a first solid electrolyte layer as defined herein; and a second solid electrolyte layer as defined herein, wherein the first solid electrolyte layer includes a first inner insulating layer, a first outer insulating layer, a first inner conductive layer and a first outer conductive layer as defined herein, the second solid electrolyte layer includes a second inner insulating layer, a second outer insulating layer, a second inner conductive layer and a second outer conductive layer as defined herein, and the first outer conductive layer and the second outer conductive layer are in contact with one another.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: September 6, 2011
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Seiji Oya, Tomohiro Wakazono, Mineji Nasu
  • Patent number: 8012327
    Abstract: An object of the present invention is to provide a capillary electrophoresis apparatus in which simultaneity can be ensured between sensitivity and data acquisition to decrease a pull-up signal while spectral data acquisition is eliminated in each capillary exchange. The invention relates to a capillary electrophoresis apparatus in which capillary position shift is detected in each capillary exchange by detecting a capillary position. A capillary position measuring light source is provided in the capillary electrophoresis apparatus of the invention. The capillary is irradiated with light emitted from the capillary position measuring light source, a capillary image is detected with a two-dimensional detector, and thereby a position deviation of the capillary is determined. On the basis of the position deviation of the capillary, a data acquisition area is set in the two-dimensional detector, or a reference fluorescent light spectrum determined from the capillary at the standard position is corrected.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: September 6, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Motohiro Yamazaki, Ryoji Inaba, Satoshi Takahashi, Isao Haraura, Tomoyuki Sakai
  • Patent number: 7985330
    Abstract: A method and program prevents a user from bypassing a limit placed on a specified operating life of a sensor by disconnecting and reconnecting the sensor. The present invention checks a characteristic of the sensor to see if the sensor is used prior to the connection of the sensor, and rejects the sensor if the sensor is determined to have been used before. The process of checking the characteristic of the sensor involves performing an Electrochemical Impedance Spectroscopy (EIS) procedure and calculating an impedance value. The impedance value can be compared to various threshold values for a variety of purposes including the determination of age, condition, hydration, and stabilization of the sensor.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: July 26, 2011
    Assignee: Medtronic Minimed, Inc.
    Inventors: Lu Wang, Rajiv Shah, Kenneth W. Cooper, Richard K. Yoon, Helen Lee
  • Patent number: 7981265
    Abstract: A gas concentration measuring apparatus for use in air-fuel ratio control of automotive engines is designed to determine the concentration of oxygen within a wide and a narrow range using a sensor current flowing through a sensor element. The apparatus includes an amplifier circuit equipped with an operational amplifier and a plurality of amplifying resistors and a switch. The switch is responsive to a request signal to switch a relation in electrical connection between an operational amplifier and the amplifying resistors to distribute the amplifying resistors into an input resistor and a feedback resistor for the operational amplifier to change an amplification factor of the amplifier circuit. This results in a change in resolution of measurement of the concentration of oxygen, thereby ensuring enhanced accuracy in determining the concentration of oxygen in a selected one of the narrow and wide ranges.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: July 19, 2011
    Assignee: Denso Corporation
    Inventors: Tomoo Kawase, Eiichi Kurokawa, Satoshi Hada, Toshiyuki Suzuki, Katsuhide Akimoto
  • Patent number: 7967965
    Abstract: The present invention provides a unique solution to the problems of both steady-state and transient signals produced by a variety of interfering stimuli, including humidity, which relies upon the inclusion in a gas sensing electrode in an electrochemical gas sensor of a catalyst material in addition to a first catalyst material reactive to the target gas, the additional, or second, catalyst material producing a response to an interfering stimulus which is of the opposite polarity to that generated by the first catalyst material.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: June 28, 2011
    Assignee: Honeywell International Inc.
    Inventor: Martin Jones
  • Patent number: 7943034
    Abstract: A method and apparatus for provide a stable voltage to an electrochemical cell used for measurement of an analyte such as glucose in a liquid sample. The apparatus uses a circuit in which multiple switching positions provide both calibration information for use in calibration of electronic components in the circuit and error checking functionality.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: May 17, 2011
    Assignee: Agamatrix, Inc.
    Inventors: Steven Diamond, Martin Forest, Darius Rad, Baoguo Wei
  • Patent number: 7927474
    Abstract: A cell electrophysiological sensor is provided with: a well having a wall formed by at least one curved face, with opening sections being formed on the two ends thereof; a frame substrate having a through hole and an electrode; a cell electrophysiological sensor chip that is provided with a thin plate having a second through hole; and a void substrate, and in this structure, the frame substrate has a thickness greater than the thickness of the cell electrophysiological sensor chip and the opening diameter of the third opening section is made larger than the opening diameter of the fourth opening section.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: April 19, 2011
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Hiroshi Ushio, Soichiro Hiraoka
  • Patent number: 7901556
    Abstract: A gas sensor is equipped with a cover assembly made up of an outer cover and an inner cover in which a gas sensor element is disposed. The outer cover has an outer gas inlet and an outer gas outlet formed closer to a top end of the cover assembly than the outer gas inlet. The inner cover has an inner gas inlet formed closer to the top end of the cover assembly than the outer gas inlet. The inner gas inlet is oriented to minimize the entry of drops of water having entered along with a gas to be measured into the inner cover to avoid splashing of the gas sensor element with the water.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: March 8, 2011
    Assignee: Denso Corporation
    Inventor: Kouhei Yamada
  • Patent number: 7883611
    Abstract: An electrochemical sensor, especially for gases, is provided having a mediator compound based on transition metal salts of polybasic acids and/or transition metal salts of polyhydroxycarboxylic acids. The electrochemical sensor also contains a DLC, BDD or a precious metal thin-layer measuring electrode (3). The electrochemical sensor may be used for determining SO2 and H2S.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: February 8, 2011
    Assignee: Drägerwerk Aktiengesellschaft
    Inventors: Sabrina Sommer, Herbert Kiesele, Frank Mett
  • Patent number: 7867370
    Abstract: A gas sensor element has a solid electrolyte body of oxygen ionic conductivity, a target gas electrode and a reference gas electrode formed on both surfaces of the solid electrolyte body, respectively, a porous diffusion resistance layer, and a catalyst support trap layer. The porous diffusion resistance layer covers the target gas electrode and through which target gases to be measured are passing. The catalyst support trap layer is formed on the outer surface of the porous diffusion resistance layer and supports noble metal catalyst. In the gas sensor element, the noble metal catalyst is made of platinum, rhodium, palladium supported in the catalyst support trap layer. In particular, an addition amount of palladium in the total amount of the noble metal catalyst is within a range of 2 to 65 wt %.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 11, 2011
    Assignee: Denso Corporation
    Inventors: Nobuyuki Tsuji, Akio Tanaka, Keigo Mizutani
  • Patent number: 7854826
    Abstract: The present invention relates to a carbon nanotube transistor biosensor with aptamers and a method for detecting a target material using the same, more particularly to a carbon nanotube transistor biosensor recognizing the target material, i.e., a specific molecule (such as a protein, a peptide, an amino acid, and an organic/inorganic compound) by using DNA aptamers and a method for screening a target material using the same. In the biosensor of the present invention, the aptamers binding specifically to a particular protein are adsorbed on a carbon nanotube constituting the channel domain of carbon nanotube transistor to easily detect/identify a particular protein via the electric conductivity of carbon nanotube that varies if the particular protein is exposed to corresponding aptamers.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: December 21, 2010
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Hye Mi So, Jeong O Lee, Yong Hwan Kim, Ki Hoon Won, Hyun Ju Chang, Beyong Hwan Ryu, Ki Jeong Kong, Young Min Choi
  • Patent number: 7850836
    Abstract: An initial pulse current cycle is supplied to at least one through-hole via. The pulse current cycle includes a forward pulse current. The magnitude of the forward pulse current is lower than the magnitude of the reverse pulse current. A corresponding forward and reverse current density is generated across the via causing conductive material to be deposited within the via, thereby reducing the effective aspect ratio of the via. At least one subsequent pulse current cycle is supplied. The magnitudes of the forward and reverse pulse currents of the subsequent pulse current cycle are determined in relation to the reduced effective aspect ratio. A subsequent corresponding forward and reverse current density is generated across the through-hole via causing conductive material to be deposited within the via, thereby further reducing the effective aspect ratio of the via.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: December 14, 2010
    Assignee: Nanyang Technological University
    Inventors: Pradeep Dixit, Jianmin Miao
  • Patent number: 7846321
    Abstract: Measurement of the series track resistance of a working and counter electrode pair in an electrochemical test strip provide error detection for multiple variations in the quality of the test strip, as well as the operation of strip in the test meter. In particular, a single measurement of series resistance can be used to detect and generate an error message when an incorrect reading is likely to result due to (1) damaged electrode tracks, (2) fouled electrode surfaces, (3) dirty strip contacts, or (4) short circuit between the electrodes.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: December 7, 2010
    Assignee: Agamatrix, Inc.
    Inventors: Steven Diamond, Ian Harding, Richard Williams
  • Patent number: 7842174
    Abstract: A handheld sensor device is provided for measuring an ion concentration in a solution. The solution is in an electrochemical cell that includes a counter electrode, a working electrode, and a reference electrode. The sensor includes a control amplifier configured to provide a current through the counter electrode and the working electrode so as to maintain a predetermined voltage between the working electrode and the reference electrode. The sensor also includes a current amplifier configured to measure the current provided through the counter electrode and the working electrode. In one embodiment, the sensor also includes a direct digital frequency synthesizer (DDFS) including a phase accumulator. The DDFS is configured to selectively generate a waveform specified by an electrochemical technique such as square wave voltammetry, cyclic voltammetry, linear sweep voltammetry, differential-pulse polarography, normal-pulse polarography, or other known electrochemical techniques.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: November 30, 2010
    Assignee: Utah State University
    Inventors: Anhong Zhou, Huifang Dou
  • Patent number: 7837841
    Abstract: Electrochemical plating (ECP) apparatuses with auxiliary cathodes to create uniform electric flux density. An ECP apparatus for electrochemical deposition includes an electrochemical cell with an electrolyte bath for electrochemically depositing a metal on a substrate. A main cathode and an anode are disposed in the electrolyte bath to provide a main electrical field. A substrate holder assembly holds a semiconductor wafer connecting the cathode. An auxiliary cathode is disposed outside the electrochemical cell to provide an auxiliary electrical field such that a flux line density at the center region of the substrate holder assembly substantially equals that at the circumference of the substrate holder assembly.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: November 23, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kei-Wei Chen, Mu-Han Cheng, Jian-Sin Tsai, Ying-Lang Wang
  • Patent number: 7811434
    Abstract: A gas sensor including a gas detecting element extending in a longitudinal direction and in which a plurality of ceramic layers are stacked, and wherein a detecting portion is provided at a leading end side of the gas detecting element, the gas detecting element including: a first ceramic layer; a second ceramic layer; a first through-hole conductor; a first peripheral portion; a second through-hole conductor; a second peripheral portion; and an opening all as defined herein, wherein the first peripheral portion and the second peripheral portion respectively have mutually overlapping adhered portions and separated portions opposing one another through a gap continuing to the opening, and a relationship L1>S1 is satisfied, where L1 represents a maximum length of the adhered portion, and S1 represents a maximum length of the separated portion.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: October 12, 2010
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Masaki Mizutani, Shigeki Mori, Shigeo Kondo, Nobuo Furuta
  • Patent number: 7799193
    Abstract: An electrochemical sensor is provided that includes a housing having an outer wall, a plurality of longitudinal walls disposed within the outer wall, and a reference chamber housing a reference electrode. The longitudinal walls define a plurality of longitudinal chambers. Ionic communication between the target fluid and the reference electrode passes sequentially through each of longitudinal chambers from a first longitudinal chamber to the reference chamber. In this manner, the sensor provides generally a long, tortuous flow path, or salt bridge, between the target fluid and the reference electrode, resulting in a high resistance factor for the sensor.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: September 21, 2010
    Assignee: Georg Fischer Signet LLC
    Inventors: Steven Wells, Gert Burkhardt, Anthony Thai
  • Patent number: 7776193
    Abstract: A cell electrophysiological sensor is provided with: a well having a wall formed by at least one curved face, with opening sections being formed on the two ends thereof; a frame substrate having a through hole and an electrode; a cell electrophysiological sensor chip that is provided with a thin plate having a second through hole; and a void substrate, and in this structure, the frame substrate has a thickness greater than the thickness of the cell electrophysiological sensor chip and the opening diameter of the third opening section is made larger than the opening diameter of the fourth opening section.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: August 17, 2010
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Hiroshi Ushio, Soichiro Hiraoka
  • Patent number: 7776196
    Abstract: A method for arranging particles according to one aspect of the present invention comprises the steps of: forming a thin film on a surface of a substrate, the thin film being obtained by dispersing first particles made of metal in a material, a surface of the material is to be charged to a first polarity in a predetermined solution; dispersing second particles in the solution, the second particles being charged to a second polarity opposite to the first polarity; immersing the thin film in the solution; and irradiating the thin film with light having a wavelength which causes plasmon resonance with surface plasmons of the metal particles.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: August 17, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Fujimoto, Tsutomu Nakanishi