Patents Examined by Sylvia R. MacArthur
  • Patent number: 8435380
    Abstract: A substrate chucking member includes a substrate supporting member and a rotation adjustment unit. The supporting member includes a rotatable supporting plate to load a substrate, and chucking pins disposed at the supporting plate for spacing the substrate off the top of the supporting plate by supporting the edge of the substrate from a side of the substrate. Each of the chucking pins is rotatable for rotating the substrate supported on the chucking pins. The rotation adjustment unit is disposed under the supporting plate for adjusting rotation of the chucking pins. During a process, since a substrate is rotated by the chucking pins to vary points of the substrate making contact with the chucking pins, positions of the substrate where a process liquid falls after colliding with the chucking pins can be continuously varied. Therefore, the substrate can be processed without defects at an end part of the substrate.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: May 7, 2013
    Assignee: Semes Co., Ltd.
    Inventors: Bong Joo Kim, Taek Youb Lee
  • Patent number: 8435379
    Abstract: A substrate cleaning chamber includes a contoured ceiling electrode having an arcuate surface that faces a substrate support and has a variable cross-sectional thickness to vary the gap size between the arcuate surface and the substrate support to provide a varying plasma density across the substrate support. A dielectric ring for the cleaning chamber comprises a base, a ridge, and a radially inward ledge that covers the peripheral lip of the substrate support. A base shield comprises a circular disc having at least one perimeter wall. Cleaning and conditioning processes for the cleaning chamber are also described.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: May 7, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Vineet Mehta, Karl Brown, John A. Pipitone, Daniel J. Hoffman, Steven C. Shannon, Keith A. Miller, Vijay D. Parkhe
  • Patent number: 8430991
    Abstract: A production apparatus is provided for producing a near field optical head that includes, during its production process, a substrate, at least one protuberance extending from a surface of the substrate, an electrically conductive shielding film covering the protuberance and the substrate, and a parent film, as a mother material for an air bearing, covering the shielding film. The production apparatus has an etchant for etching the parent film and a container for storing the etchant and for containing the substrate, the shielding film, and the parent film so that the substrate, the shielding film, and the parent film are immersed in the etchant. At least one electrode is fixedly mounted in the container so as to be immersed in the etchant. A measuring device measures an electrical characteristic between the electrode and the shielding film.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: April 30, 2013
    Assignee: Seiko Instruments Inc.
    Inventors: Masakazu Hirata, Manabu Oumi
  • Patent number: 8425718
    Abstract: The present invention provides a method of wet etching a silicon slice including a silicon substrate and a metal film layer thereon comprising steps of: performing lithographic process to the silicon slice forming a masked silicon slice comprising the silicon substrate and a partially masked metal film thereon; immersing the masked silicon slice into an etchant; rotating the masked silicon slice in the etchant; injecting high-purity nitrogen gas into the etchant for agitating the etchant; removing the masked silicon slice out of the etchant, upon completion of etching; and rinsing the masked silicon slice with deionized water.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: April 23, 2013
    Assignee: University of Electronic Science and Technology of China
    Inventors: Yadong Jiang, Zhiming Wu, Tao Wang, Weizhi Li, Xiaolin Han
  • Patent number: 8419891
    Abstract: A knife edge ring apparatus is provided for use during semiconductor manufacturing which includes a ring-shaped body having an inner side wall, an outer side wall and a top surface having a predetermined width. A multi-staged inclined portion is formed in the outer side wall and a plurality of discharge holes penetrate the body. Each of the discharge holes have an inlet associated therewith positioned at the inclined portion. The knife edge ring allows developer and cleaning solution to be discharged away from the wafer. A method of cleaning the bottom surface of a semiconductor wafer is also provided which employs the use of the knife edge ring. Developer is supplied onto the top surface of a wafer. Spraying solution is sprayed onto the bottom surface of the wafer.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: April 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dug-Kyu Choi
  • Patent number: 8398812
    Abstract: A substrate treating apparatus for stripping photoresist on a substrate includes a support part for supporting the substrate, a dry-type treating part for stripping the photoresist on the substrate, and a wet-type treating part for stripping the photoresist on the substrate. While the substrate is supported by the support part, the photoresist on the substrate is primarily stripped by means of the dry-type treating part and secondarily stripped by means of the wet-type treating part. The dry-type treating part includes a plasma supply unit configured to supply plasma onto the substrate and a moving unit configured to vary a relative position of the plasma supply unit and the substrate.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: March 19, 2013
    Assignee: Semes Co. Ltd.
    Inventors: Yi Jung Kim, Kyung Jin Seo, Chang Ro Yoon, Jung Keun Cho
  • Patent number: 8398811
    Abstract: A polishing apparatus has a polishing section (302) configured to polish a substrate and a measurement section (307) configured to measure a thickness of a film formed on the substrate. The polishing apparatus also has an interface (310) configured to input a desired thickness of a film formed on a substrate to be polished and a storage device (308a) configured to store polishing rate data on at least one past substrate therein. The polishing apparatus includes an arithmetic unit (308b) operable to calculate a polishing rate and an optimal polishing time based on the polishing rate data and the desired thickness by using a weighted average method which weights the polishing rate data on a lately polished substrate.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: March 19, 2013
    Assignee: Ebara Corporation
    Inventors: Tatsuya Sasaki, Naoshi Yamada, Yoshifumi Katsumata, Noburu Shimizu, Seiryo Tsuno, Takashi Mitsuya
  • Patent number: 8398817
    Abstract: Disclosed is a substrate processing apparatus to improve the etching uniformity when a back surface of a substrate is etched with a high-temperature chemical liquid. The chemical-liquid processing apparatus removes a film formed on a substrate by etching with a high-temperature chemical liquid. The apparatus includes a substrate holding mechanism to hold the substrate horizontally in a state where a back surface of the substrate faces downward, a rotating mechanism to rotate the substrate holding mechanism by a hollow rotating shaft extending vertically, a chemical-liquid discharge nozzle to supply the high-temperature chemical liquid to the back surface of the substrate by discharging the high-temperature chemical liquid upwardly, and a chemical-liquid supply mechanism to supply the chemical liquid to the chemical-liquid discharge nozzle.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: March 19, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Hiromitsu Namba, Jiro Higashijima
  • Patent number: 8394228
    Abstract: A method of removing materials, and preferably photoresist, from a substrate comprises dispensing a liquid sulfuric acid composition comprising sulfuric acid and/or its desiccating species and precursors and having a water/sulfuric acid molar ratio of no greater than 5:1 onto an material coated substrate in an amount effective to substantially uniformly coat the material coated substrate. The substrate is preferably heated to a temperature of at least about 90° C., either before, during or after dispensing of the liquid sulfuric acid composition. After the substrate is at a temperature of at least about 90° C., the liquid sulfuric acid composition is exposed to water vapor in an amount effective to increase the temperature of the liquid sulfuric acid composition above the temperature of the liquid sulfuric acid composition prior to exposure to the water vapor. The substrate is then preferably rinsed to remove the material.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: March 12, 2013
    Assignee: TEL FSI, Inc.
    Inventors: Kurt Karl Christenson, Ronald J. Hanestad, Patricia Ann Ruether, Thomas J. Wagener
  • Patent number: 8394234
    Abstract: Provided is a spin head. Chuck pins, installed at a support plate to support the lateral surface of a substrate, are moved along the perpendicular direction to the radial direction of the support plate. The effect of centrifugal force applied to the chuck pins during the rotation of the support plate is minimized to support a substrate stably.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: March 12, 2013
    Assignee: Semes Co., Ltd.
    Inventor: Taek Youb Lee
  • Patent number: 8388409
    Abstract: A substrate polishing apparatus is provided for preventing excessive polishing and insufficient polishing, and enabling a quantitative setting of an additional polishing time. The substrate polishing apparatus comprises a mechanism for polishing a substrate to be polished; a film thickness measuring device for measuring the thickness of a thin film deposited on the substrate; an interface for entering a target thickness for the polished thin film; a storage area for preserving past polishing results; and a processing unit for calculating a polishing time and a polishing rate. The substrate polishing apparatus builds an additional polishing database for storing data acquired from the result of additional polishing in the storage area.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: March 5, 2013
    Assignees: Ebara Corporation, Kabushiki Kaisha Toshiba
    Inventors: Hidetaka Nakao, Yasumitsu Kawabata, Yoshifumi Katsumata, Naoki Ozawa, Tatsuya Sasaki, Atsushi Shigeta
  • Patent number: 8388800
    Abstract: An exemplary wet processing apparatus includes a conveyor, a spraying system, and a suction system. The conveyor is configured for conveying a substrate. The spraying system includes an upper spraying conduit above the conveyor and an upper spraying nozzle mounted on the upper spraying conduit. The suction system includes a suction conduit and a suction nozzle connected to the suction conduit. The suction nozzle is adjacent to the conveyor and configured for suction the wet processing liquid sprayed on the substrate. The suction conduit is connected to the spraying conduit in such a manner that the flowing of the wet processing liquid in the upper spraying conduit can create a negative pressure in the suction conduit to enable the suction nozzle to suck the wet processing liquid on the substrate.
    Type: Grant
    Filed: April 25, 2010
    Date of Patent: March 5, 2013
    Assignees: FuKui Precision Component (Shenzhen) Co., Ltd., Zhen Ding Technology Co., Ltd.
    Inventors: Yao-Wen Bai, Pan Tang, Xiao-Ping Li
  • Patent number: 8388756
    Abstract: An evaporation source that causes the evaporation bars to vaporize and emit small particles. The small particles of the evaporation bars are evenly dispersed all around the evaporation source. Thus, the particles then accumulate on workpieces to form symmetrical films. A vapor deposition apparatus using the present evaporation source is also described.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: March 5, 2013
    Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., FIH (Hong Kong) Limited
    Inventor: Sheng-Lai Lin
  • Patent number: 8382903
    Abstract: A vaporizer for generating a process gas from a liquid material includes a container defining a process space of the vaporizer, and an injector having a spray port configured to spray the liquid material in an atomized state downward in the container. A lower block is disposed below the spray port inside the container such that a run-up space for the atomized liquid material is defined between the spray port and the lower block, and an annular space continuous to the run-up space is defined between an inner surface of the container and the lower block. First and second heaters are respectively provided to the container and the lower block, and configured to heat the atomized liquid material flowing through the annular space to generate the process gas. A gas delivery passage is connected to the container to output the process gas from the annular space.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: February 26, 2013
    Assignees: Tokyo Electron Limited, Soken-Industries
    Inventors: Tsuneyuki Okabe, Shigeyuki Okura, Kazuo Ujiie
  • Patent number: 8382902
    Abstract: Apparatus and method for vapor deposition of a uniform thickness thin film of lubricant on at least one surface of a disk-shaped substrate. The invention has particular utility in depositing thin films of polymeric lubricants onto disc-shaped substrates in the manufacture of magnetic and MO recording media.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: February 26, 2013
    Inventors: Michael Joseph Stirniman, Paul Stephen McLeod
  • Patent number: 8377252
    Abstract: The present invention relates to an apparatus for spraying an etchant and a method for manufacturing a printed circuit board. In one exemplary embodiment the apparatus includes a manifold, a plurality of feed pipes in fluid communication with the manifold, each of the feed pipes having a plurality of spray nozzles mounted thereon, the feed pipes cooperatively constitute a spray region, and a pressure-boosting device configured for increasing a spray pressure of the spray nozzles which are located at a central area of the spray region. The apparatus can overcome “the puddle effect” on an upper surface of the printed circuit board.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: February 19, 2013
    Assignee: Zhen Ding Technology Co., Ltd.
    Inventors: Wen-Chin Lee, Cheng-Hsien Lin
  • Patent number: 8366872
    Abstract: According to the present invention, during the photolithography processing of a substrate, exposure processing is performed immediately after removal of a coating film on the rear surface of the substrate, and a coating film is formed on the rear surface of the substrate immediately after the exposure processing. Thereafter, etching treatment and so on are performed, and a series of these treatment and processing steps are performed a predetermined number of times. The coating film has been formed on the rear surface of the substrate at the time for the etching treatment, so that even if the coating film gets minute scratches, the rear surface of the substrate itself is protected by the coating film and thus never scratched. Further, since the coating film on the rear surface of the substrate is removed immediately before the exposure processing, the rear surface of the substrate can be flat for the exposure processing.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: February 5, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Kenji Tsutsumi, Junichi Kitano, Osamu Miyahara, Hideharu Kyouda
  • Patent number: 8366870
    Abstract: The invention provides a plasma processing apparatus capable of minimizing the non-uniformity of potential distribution around wafer circumference, and providing a uniform process across the wafer surface. The apparatus is equipped with a focus ring formed of a dielectric, a conductor or a semiconductor and having RF applied thereto, the design of which is optimized for processing based on a design technique clarifying physical conditions for flattening a sheath-plasma interface above a wafer and the sheath-plasma interface above the focus ring. A surface voltage of the focus ring is determined to be not less than a minimum voltage for preventing reaction products caused by wafer processing from depositing thereon.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: February 5, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Ryoji Nishio, Tadamitsu Kanekiyo, Yoshiyuki Oota, Tsuyoshi Matsumoto
  • Patent number: 8361233
    Abstract: The present invention provides a glass support system, including methods and equipment for supporting a glass substrate on a column of air. The disclosed glass alignment equipment may be used to prevent or reduce defects or contamination on the surface of a glass substrate which may arise when the glass is aligned prior to etching. In particular, a support pin of the present invention may be used with an air circulation system to support or align glass over a column of air so as to reduce or prevent defects or contamination on the glass in dry etching processes used in the manufacturing of LCDs and other devices.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: January 29, 2013
    Assignee: LG Display Co., Ltd.
    Inventor: Hyuk Min Kwon
  • Patent number: 8361234
    Abstract: A substrate treatment apparatus includes a substrate holding unit, a gas ejection nozzle, and a gas supply unit. The substrate holding unit is configured to hold a substrate. The gas supply unit is configured to supply a gas to the gas ejection nozzle. The gas ejection nozzle is disposed to be positioned adjacent a center portion of the substrate held by the substrate holding unit. The gas ejection nozzle has a gas ejection port. The gas ejection nozzle is configured to eject the gas radially from the gas ejection port over the substrate held by the substrate holding unit to form a gas-flow for covering the substrate.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: January 29, 2013
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Takashi Izuta, Hiroaki Ishii, Asuka Yoshizumi