Patents Examined by Thai-Ba Trieu
  • Patent number: 9957883
    Abstract: A controller, for a supercharger-equipped internal combustion engine, that can improve the feedback response of compressor driving force is provided. In a controller, inertial force produced by an inertial moment of a supercharger is calculated, based on a real rotation speed of the supercharger; then, driving force feedback control is implemented in which a gate valve control value, which is a control value for a gate valve actuator, is changed so that an addition value obtained by adding the inertial force to the real compressor driving force approaches a target compressor driving force.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: May 1, 2018
    Assignees: Mitsubishi Electric Corporation, MAZDA MOTOR CORPORATION
    Inventors: Junichi Inoue, Takahiko Ono, Toshiaki Maruo, Takafumi Nishio, Yugou Sunagare
  • Patent number: 9951725
    Abstract: A two-stroke, opposed-piston engine with one or more ported cylinders and uniflow scavenging includes an exhaust gas recirculation (EGR) construction that provides a portion of the exhaust gasses produced by the engine for mixture with charge air to control the production of NOx during combustion.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: April 24, 2018
    Assignee: ACHATES POWER, INC.
    Inventors: Eric P. Dion, Iain J. L. Read, Fabien G. Redon, Gerhard Regner, Michael H. Wahl
  • Patent number: 9951682
    Abstract: A compressor for an internal combustion engine is provided. The compressor includes a compressor shaft having compressor blades attached thereto, positioned in an intake air duct, and rotating about an axis during compressor operation and a magnetic bearing positioned upstream of the compressor blades in the intake air duct, including a ring positioned around the compressor shaft, stator electrics arranged in the ring, and at least two magnets arranged on the compressor shaft configured to exert a magnetic force on the stator electrics to form an air gap between the ring and the compressor shaft.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 24, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Vanco Smiljanovski, Helmut Matthias Kindl, Joerg Kemmerling, Frank Kraemer, Franz J. Brinkmann
  • Patent number: 9951681
    Abstract: The invention is related to a compressor system (10) for a combustion engine (40), comprising a drive train (11), a compressor (12) and a first electric machine (20) mechanically coupleable by the drive train (11) with the combustion engine (40). Further the invention is related to a combustion engine (40) with a compressor system (10).
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: April 24, 2018
    Assignee: FEV GmbH
    Inventor: Thorsten Schnorbus
  • Patent number: 9939194
    Abstract: Embodiments generally relate to a motor driven compressor (MDC) power network electrically isolated and independent from a balance of plant (BOP) power network within an electrical power system and methods for operating the same. In one embodiment, the MDC power network can include one or more MDC trains, and each of the MDC trains can include an MDC distribution bus, one or more MDC turbine generators, one or more electric motors, and one or more compressors. The BOP power network can include a BOP distribution bus, one or more BOP turbine generators, and one or more plant circuits comprising the balance of the plant.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: April 10, 2018
    Assignee: KELLOGG BROWN & ROOT LLC
    Inventor: Keith McCarthy
  • Patent number: 9938988
    Abstract: An exhaust turbocharger comprises a turbine having a turbine wheel and a compressor having a compressor wheel. The turbine wheel and the compressor wheel are connected by a shaft rotatably mounted in a bearing housing. A means for axially securing the shaft and the turbine wheel connected thereto is provided between the compressor wheel and the turbine wheel. The means limits an axial movement of the shaft and of the turbine wheel connected thereto in the direction of the turbine in the event of the compressor wheel bursting. The means comprises a component which is screwed onto the shaft during mounting and is fixed in the axial direction in the housing.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: April 10, 2018
    Assignee: ABB TURBO SYSTEMS AG
    Inventors: Christoph Morath, Stefan Gantert
  • Patent number: 9938891
    Abstract: A method is provided for operating an internal combustion engine (10) that has at least one cylinder row (11a, 11b) with multiple cylinders (12a, 12b). Each cylinder row (11a, 11b) has a first exhaust-gas turbocharger (13a, 13b) and a second exhaust-gas turbocharger (14a, 14b). The method includes providing charge air for the cylinders (12a, 12b) of the internal combustion engine (10) either exclusively by the first exhaust-gas turbocharger (13a, 13b) of the cylinder row (11a, 11b) of the internal combustion engine (10) or by both the first exhaust-gas turbocharger (13a, 13b) of the cylinder row (11a, 11b) of the internal combustion engine (10) and the second exhaust-gas turbocharger (14a, 14b) of the cylinder row (11a, 11b) of the internal combustion engine (10) in a manner dependent on an operating mode demanded by a driver and/or by a controller for the internal combustion engine (10).
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: April 10, 2018
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventors: Andre Casal Kulzer, Erwin Rutschmann, Thorben Walder
  • Patent number: 9932888
    Abstract: A turbocharger turbine section is disclosed. The turbine may include a first swing vane rotatably coupled with a first pin that may include a first leading edge, a first trailing edge, a first exhaust side edge extending between the first leading edge and the first trailing edge and a first bearing side edge extending between the first leading edge and the first trailing edge. Furthermore, the turbine may include a second swing vane rotatably coupled with a second pin that may include a second leading edge, a second trailing edge, a second exhaust side edge extending between the second leading edge and the second trailing edge and a second bearing side edge extending between the second leading edge and the second trailing edge. Moreover, the turbine may include an exhaust side nozzle wall, a bearing side nozzle wall opposite the exhaust side nozzle wall and a turbine wheel.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: April 3, 2018
    Assignee: BorgWarner Inc.
    Inventor: Robert Wallace
  • Patent number: 9932991
    Abstract: Methods and systems are provided for mitigating noise generated by a compressor operating at low flow rates. A swirl device with two concentric flow passages upstream of the compressor directs intake air flow to the compressor through two different flow paths, depending on air flow rates. Angled swirl vanes at an outlet of the swirl device pre-whirl the air flowing to the compressor to reduce noise generation at low air flow rates.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: April 3, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Robert Andrew Wade, Tim J. Knott
  • Patent number: 9932887
    Abstract: Methods and systems are provided for adjusting flow of exhaust gas from downstream of an exhaust turbine outlet to an exhaust gas aftertreatment device inlet via a compact turbine outlet cone with adjustable swirl vanes. Exhaust flow reaching the exhaust gas aftertreatment device is adjusted based on a desired exhaust gas temperature and exhaust gas flow rate at the aftertreatment device. During cold start conditions, the swirl vanes may be closed to concentrate exhaust gas flowing towards a portion of the aftertreatment device while after attainment of aftertreatment device light-off temperature, the position of the swirl vanes may be adjusted to introduce turbulence and homogeneity to exhaust flow reaching the exhaust aftertreatment device.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: April 3, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Joerg Kemmerling, Franz Arnd Sommerhoff, Andreas Kuske, Helmut Matthias Kindl, Vanco Smiljanovski, Franz J. Brinkmann
  • Patent number: 9920673
    Abstract: The invention relates to an SCR line for treatment of exhaust from an internal combustion engine and including a first hose to carry a reducing agent, a second hose to carry a tempering agent and a pipe enclosing the two hoses. The two hoses are arranged in the pipe so as to run side by side in parallel. Each of the same-side ends of the first hose and of the pipe are connected to a reducing agent coupling housing. The ends of the second hose are each connected to a tempering agent coupling part separate from the reducing agent coupling housing. At least one of the reducing agent coupling housings has a through-opening at the outer perimeter. The second hose runs from the interior of the pipe through the through-opening to the outside. Furthermore, the invention relates to an SCR line bundle with an SCR line.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: March 20, 2018
    Assignee: VOSS AUTOMOTIVE GMBH
    Inventors: Andreas Becht, Alexander Bohl, Klaus Kaltwasser, Sascha Rosenfeldt
  • Patent number: 9915192
    Abstract: A power conversion device in the form of a compressor drive constitutes a three channel power sharing transmission which allows power input and/or output from shafts on two of the channels along with hydraulic, electric or potentially pneumatic power input and/or output from the third channel. Varying the input and/or output of hydraulic, electric or pneumatic flow provides a continuously variable transmission function. Several embodiments of the power conversion device are described to drive a supercharger for an internal combustion engine providing a variable ratio coupling allowing effective use of a centrifugal type compressor across a broad range of operational engine speeds.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: March 13, 2018
    Inventor: Jeffrey J. Buschur
  • Patent number: 9915193
    Abstract: A method for operating an internal combustion engine (10) that has at least one cylinder row (11a, 11b) with first and second exhaust-gas turbochargers (13a, 13b; 14a, 14b). Charge air is provided by the first exhaust-gas turbocharger (13a, 13b) in single-charger operation, but is provided by the first and second exhaust-gas turbocharger (13a, 13b; 14a, 14b) in two-charger operation. To switch from single-charger to two-charger operation above a load threshold value of the internal combustion engine (10), when a speed of the internal combustion engine (10) reaches or overshoots a threshold value, a charge pressure is increased to build up a torque reserve and a charge pressure reserve and to maintain a driver demand torque. When the charge pressure reaches or overshoots a threshold value, a switch is made from single-charger operation to two-charger operation, and subsequently, the torque reserve and the charge pressure reserve are eliminated.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: March 13, 2018
    Assignee: DR. ING. H.C.F. PORSCHE AKTIENGESELLSCHAFT
    Inventors: Andre Casal Kulzer, Thorben Walder, Ludwig Theilemann, Michael Reinhardt, Michael Ebert
  • Patent number: 9909490
    Abstract: Methods and systems are provided for pressure control in a boosted engine system. A variable geometry turbine (VGT) geometry, and/or wastegate (WG), and/or an exhaust gas recirculation (EGR) valve opening is adjusted at least based on a difference between the exhaust pressure and an intake pressure in order to reduce the difference between exhaust and intake manifold pressures, thereby reducing pumping work losses.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: March 6, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael J. Hand, III, Thomas Alan Brewbaker, Michiel J. Van Nieuwstadt, Brien Lloyd Fulton
  • Patent number: 9903268
    Abstract: A supercharged internal combustion engine includes at least two exhaust-gas turbochargers arranged in series, wherein a first exhaust-gas turbocharger serves as a low-pressure stage and a second exhaust-gas turbocharger serves as a high-pressure stage. A second turbine of the second exhaust-gas turbocharger may be present upstream of a first turbine of the first exhaust-gas turbocharger, and a second compressor of the second exhaust-gas turbocharger may be arranged in an intake system downstream of a first compressor of the first exhaust-gas turbocharger and a first bypass line may branch off upstream of the second turbine and join back at a junction point between the first turbine and the second turbine. The supercharged engine also includes an exhaust-gas recirculation arrangement and at least one exhaust-gas aftertreatment system between the first turbine and the second turbine.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: February 27, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Vanco Smiljanovski, Helmut Matthias Kindl, Joerg Kemmerling, Franz Arnd Sommerhoff, Franz J. Brinkmann
  • Patent number: 9903323
    Abstract: A system for an internal combustion engine can include a separation device and an engine component including first and second valves. The separation device can separate intake air into a volume of nitrogen-rich air and a volume of oxygen-rich air. A first valve element can be movable relative to a first valve body and can have an annular shape disposed about a central axis of the combustion chamber. The first valve body can be fluidly coupled to the separation device and direct the oxygen-rich air into a central area of the combustion chamber. A second valve element can be movable relative to a second valve body and can have an annular shape disposed about the central axis, radially outward of the first valve. The second valve body can be fluidly coupled to the separation device and can direct the nitrogen-rich air to a peripheral area of the combustion chamber.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: February 27, 2018
    Assignee: DENSO International America, Inc.
    Inventor: Michael Bima
  • Patent number: 9896992
    Abstract: Methods and systems are provided for a pressure-charged combustion engine having at least one cylinder head comprising at least two cylinders. In one example, a system may include each cylinder having at least one outlet port, at least two cylinders configured to form two groups each comprising at least one cylinder, exhaust lines joined together to form an overall exhaust line which provides an exhaust manifold, the exhaust lines connected to an exhaust turbocharger and equipped with rotor blades wherein each rotor blade comprises a first inlet edge facing the flows and a second inlet edge facing the flows connected to one another at a connection point forming an inflection.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: February 20, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Vanco Smiljanovski, Helmut Matthias Kindl, Joerg Kemmerling, Franz Arnd Sommerhoff, Franz J. Brinkmann
  • Patent number: 9896998
    Abstract: A compound engine assembly including a compressor, an engine core including at least one rotary internal combustion engine and having an inlet in fluid communication with an outlet of the compressor, a turbine section having an inlet in fluid communication with an outlet of the engine core and configured to compound power with the engine core, and an air conduit having at least one heat exchanger extending thereacross. An outer wall of the air conduit has a plurality of openings defined therethrough downstream of the heat exchanger(s), each selectively closable by a pivotable flap movable between a retracted position where the opening is obstructed and an extended position away from the opening. Each opening defines a fluid communication between the air conduit and the ambient air when the respective flap is in the extended position. A method of directing flow through a compound engine assembly is also discussed.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: February 20, 2018
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Jean Thomassin, Sebastien Bolduc, Bruno Villeneuve, Stephane Berube, Mike Fontaine, David Gagnon-Martin, Andre Julien, Mark Cunningham, Serge Lafortune, Pierre-Yves Legare
  • Patent number: 9896991
    Abstract: Systems and methods are provided for controlling boost pressure in an engine system with a parallel turbocharger. One example method includes, responsive to a first condition, deactivating a first compressor of a first turbocharger, activating each first exhaust valve of each cylinder of an engine, and deactivating each second exhaust valve of each cylinder of the engine to flow exhaust gas from the engine to a second turbocharger. The method further includes, responsive to boost pressure exceeding a threshold, maintaining deactivation of the first compressor, reactivating each second exhaust valve to flow exhaust gas from the engine to both the first turbocharger and second turbocharger, and driving an electric assist device via a first turbine of the first turbocharger.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: February 20, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Vanco Smiljanovski, Helmut Matthias Kindl, Joerg Kemmerling, Franz J. Brinkmann, Franz Arnd Sommerhoff
  • Patent number: 9896994
    Abstract: Upon request for start-up of an engine, a control apparatus controls the opening/closing action of a waste gate valve in accordance with the temperature Te of the engine before cranking and, if the temperature Te of the engine is equal to or lower than a first set temperature Te1, sets the waste gate valve in an open state.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: February 20, 2018
    Assignee: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Ayatoshi Matsunaga, Yasuo Yamaguchi, Shinichi Murata