Patents Examined by Thai-Ba Trieu
  • Patent number: 9890691
    Abstract: Methods and systems for operating an engine that includes a compressor and charge air cooler are disclosed. In one example, air flow through the charge air cooler is increased in response to condensation accumulating in the charge air cooler without increasing engine torque. Air flow through the charge air cooler is increased to gradually reduce condensation within the charge air cooler.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: February 13, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Adam Nathan Banker, Baitao Xiao, Hamid-Reza Ossareh
  • Patent number: 9890693
    Abstract: A chamber for absorbing condensate formed in a charge-air-cooler of a turbocharged engine system. The chamber may include desiccant to absorb the moisture. The chamber may also include a valve that is controlled by the vehicle control module to open to allow airflow to pass by the desiccant and absorb the moisture from the desiccant or to place in a closed position to allow the desiccant to absorb the condensate formed in the charge-air-cooler.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: February 13, 2018
    Assignees: DENSO International America Inc., DENSO CORPORATION
    Inventors: Kevin Bockstanz, Dwayne Robert Taylor
  • Patent number: 9879595
    Abstract: An exhaust control apparatus for an engine is provided. The apparatus includes a turbocharger, a high-pressure exhaust gas recirculation (EGR) device, a low-pressure EGR device, and a flap controller. The turbocharger includes a turbine, a compressor, and movable flaps, and rotates the turbine by exhaust gas to drive the compressor so as to boost intake air. The high-pressure EGR device recirculates, within a first engine operating range, the exhaust gas from a position of an exhaust passage upstream of the turbine to a position of an intake passage downstream of the compressor. The low-pressure EGR device recirculates, within a second engine operating range, the exhaust gas from a position of the exhaust passage downstream of the turbine to a position of the intake passage upstream of the compressor. The flap controller controls flap openings.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: January 30, 2018
    Assignee: Mazda Motor Corporation
    Inventors: Kenjiro Konomi, Nobuo Yunoki, Kotaro Takahashi
  • Patent number: 9874138
    Abstract: A twin scroll turbocharger device for an internal combustion engine includes a turbine and a compressor, wherein the turbine comprises a first turbine scroll and a second turbine scroll, and wherein at least the first turbine scroll is provided with a turbine scroll inlet valve such that the exhaust gas flow through the first turbine scroll is controllable. The twin scroll turbocharger device is further characterized in that a bypass conduit is provided between a compressor and at least the first turbine scroll. The bypass conduit is provided with a bypass conduit valve such that a flow through the bypass conduit is controllable.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: January 23, 2018
    Assignee: Volvo Car Corporation
    Inventor: Goran Almkvist
  • Patent number: 9874098
    Abstract: The present invention refers to a spark ignition engine of the rotary type with a double rotation center, comprising a stator (A) with a stator central body (A1) having a compartment (1, 2), a first side cover (A2) and a second side cover (A3), wherein the compartment includes an expansion compartment (1) and a compression compartment (2) and a combustion chamber at an upper portion of the compartment (1, 2), a rotor (B) with an expansion rotating element (B1), a compressing rotating element (B2) and a hinging linear element (B3) interposed between said expansion rotating element (B1) and the compression rotating element (B2), the rotor is arranged in the compartment (1, 2) of the stator central body, wherein the expansion compartment (1) comprises a concave inner surface (1a) and the compression compartment (2) comprises a convex inner surface (2a).
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: January 23, 2018
    Assignee: LIBRALATO LTD.
    Inventor: Ruggero Libralato
  • Patent number: 9874180
    Abstract: A powering apparatus has a diesel engine, a low pressure hydraulic tube containing lower pressure hydraulic fluid, a high pressure hydraulic tube containing higher pressure hydraulic fluid, a first hydraulic pump driven by the diesel engine to send hydraulic fluid from the low pressure hydraulic tube to the high pressure hydraulic tube to adjust the pressure difference within a certain range, an exhaust gas recirculating apparatus including a first hydraulic motor driven by the pressure difference and a compressor driven by the first hydraulic motor to compress a portion of exhaust gas and to supply the exhaust gas to an intake air tube, and an exhaust heat collecting apparatus including a turbine rotated by a refrigerant heated by the exhaust gas and a second hydraulic pump driven by the turbine to send hydraulic fluid from the low pressure hydraulic tube to the high pressure hydraulic tube.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: January 23, 2018
    Assignee: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Nobuyuki Sakairi, Kazunori Ohta, Kousuke Matsumaru, Toshinori Shirai
  • Patent number: 9869258
    Abstract: A two-stroke cycle, turbo-driven, opposed-piston engine with one or more ported cylinders and uniflow scavenging has no supercharger. The engine includes a high pressure EGR loop and a pump in the EGR loop to boost the pressure of the recirculated exhaust products.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: January 16, 2018
    Assignee: ACHATES POWER, INC.
    Inventor: Eric P. Dion
  • Patent number: 9869236
    Abstract: An air intake control system for an engine, which is disposed in an intake line between a compressor of a turbocharger and an intake manifold and adjusts and controls air intake may include a motor for providing torque, a bypass line with a first end connected to the intake line and a second end connected to an external air line for delivering external air into the compressor, and a flow control valve assembly disposed at a divergent point from the intake line to the bypass line and selectively distributing air intake from the compressor to the intake manifold and the bypass line by adjusting a degree of opening of valve members in accordance with an amount of revolution of the motor.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: January 16, 2018
    Assignees: Hyundai Motor Company, Kia Motors Corp.
    Inventor: Jae Pil Lim
  • Patent number: 9856803
    Abstract: A natural gas engine system may have an engine having at least one cylinder. The engine may also have an intake manifold configured to deliver air for combustion to the cylinder and an exhaust manifold configured to discharge exhaust from the cylinder. The natural gas engine system may have a generator coupled to the engine. The generator may be configured to generate electrical power for an electrical load. The natural gas engine system may have a fuel source configured to supply natural gas for combustion in the engine, and an air tank in fluid communication with the intake manifold and the exhaust manifold. Further, the natural gas engine system may have a controller. The controller may be configured to direct a first amount of air from the air tank to the exhaust manifold and a second amount of air from the air tank to the intake manifold.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: January 2, 2018
    Assignee: Caterpillar Inc.
    Inventors: Jeff Howard, Timothy B. James, Todd A. Rezac, Brett A. Zook, David J. Lin, Gary Boyer, Robert Maxson
  • Patent number: 9850857
    Abstract: This document discloses an exhaust gas turbocharger, which includes a turbine disk connected to a turbine disk hub. The turbine disk hub extends distally away from the turbine disk and towards a shaft that connects the turbine disk to a compressor. The shaft includes a proximal end that includes a shaft hub that extends proximally away from the shaft and towards the turbine disk hub. The turbine disk hub is coaxially connected to the shaft hub at a joint. The turbine disk hub and the shaft hub form a cavity between the turbine disk and the proximal end of the shaft. The turbocharger also includes a sleeve having an inner surface that surrounds and engages at least part of the turbine disk hub, at least part of the shaft hub and that further surrounds the joint and partially surrounds the cavity. The sleeve provides structural reinforcement for the joint and additional cooling functions beyond the cooling function provided by the cavity.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: December 26, 2017
    Assignee: Electro-Motive Diesel, Inc.
    Inventors: Raji Rexavier, Gary Svihla, Alan Wiedmeyer
  • Patent number: 9850834
    Abstract: A method of operating a gasoline engine having a first subset of cylinders and a second subset of cylinders includes providing a flow of compressed air from a single-sequential compressor to the engine, selectively deactivating the first subset of cylinders, and igniting gasoline mixed with the compressed air in the second subset of cylinders. The single-sequential compressor includes a dual sided impeller having a first blade arrangement in fluid communication with a first air inlet, and an opposing second blade arrangement in fluid communication with a second air inlet. Additionally, deactivating the first subset of cylinders includes sealing the first subset of cylinders such that the flow of compressed air is provided only to the second subset of cylinders.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: December 26, 2017
    Assignee: GM Global Technology Operations LLC
    Inventor: Edward J. Keating
  • Patent number: 9835094
    Abstract: Controlling an exhaust gas temperature of an engine. An electronic control unit receives a parameter setpoint command, monitors parameters of an engine using a plurality of sensors, receives measured engine states based on the monitored engine parameters from the plurality of sensors, generates measured engine state estimates and controlled engine state estimates using an engine observer model, determines an observer error based on a difference between the measured engine states and the measured engine state estimates, generates model corrections based on the observer error, generates a desired exhaust throttle valve position using an inverse engine model based on the parameter setpoint command, the controlled engine state estimates, and the model corrections, and adjusts a position of the exhaust throttle valve based on the desired exhaust throttle position.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: December 5, 2017
    Assignee: DEERE & COMPANY
    Inventors: John L. Lahti, Dustin W. Ridenour, Michael J. Maney, Michael J. Pipho
  • Patent number: 9828921
    Abstract: An engine sound enhancement system includes a conduit in communication with at least one of an intake manifold and an exhaust manifold of an engine. An interface is arranged at least one of within the conduit and between an inlet of the conduit and the at least one of the intake manifold and the exhaust manifold. The interface is responsive to pulses within the at least one of the intake manifold and the exhaust manifold, wherein the interface is configured to transfer the pulses into the conduit.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: November 28, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: William Seldon, Scott M. Reilly, Grant Brady, Randall S. Beikmann
  • Patent number: 9828923
    Abstract: A control device for an internal combustion engine, which can accurately estimate an intake air amount introduced from an intake system into an internal combustion engine, is provided. The control device calculates the change amount of an air amount in an upstream section upstream of a throttle valve of the intake system based on the pressure and temperature of air in the upstream section; calculates a throttle passage air amount flowing out to an intake manifold, which is a section downstream of the throttle valve, based on the change amount and an introduced air amount flowing into a supercharger; and calculates the intake air amount based on the throttle passage air amount.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: November 28, 2017
    Assignee: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Hitoshi Toda, Toshiyuki Miyata
  • Patent number: 9828886
    Abstract: A high efficiency steam engine or steam expander includes a cylinder, cylinder head and piston in which cylinder clearance volume is zero or nearly zero together with a negligible amount of compression such that any pressure in the cylinder clearance volume just before the power stroke is as low as ambient pressure or condenser pressure to provide superior thermal efficiency in a compact compound engine having a high pressure expansion chamber within the piston and low pressure chamber in the cylinder. The inlet valve is opened slightly by piston movement and a steam assist force then drives it to its fully open position. Steam passes from the high pressure chamber to the low pressure chamber through a transfer valve located in the head of the piston and steam is released through an automatic exhaust valve in the cylinder head.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: November 28, 2017
    Assignee: Thermal Power Recovery, LLC
    Inventor: James V. Harmon, Sr.
  • Patent number: 9822699
    Abstract: A hybrid turbocharger includes a first power conversion unit to convert a direct-current power into alternating-current power to be output to a generator motor, a smoothing capacitor between direct-current buses, and a control unit that controls the first power conversion unit so as to cause actual generator motor speed to comply with an engine speed command of the generator motor input from an upstream controller during a motoring operation of the generator motor. The control unit changes the engine speed command to a value which is equal to or greater than the actual generator motor speed if the engine speed command of the generator motor is less than the actual generator motor speed and a direct-current bus voltage is equal to or greater than a predetermined first threshold value during the motoring operation. Accordingly, the direct-current bus voltage can be prevented from increasing during the motoring operation.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: November 21, 2017
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yukio Yamashita, Musashi Sakamoto, Yoshihisa Ono, Keiichi Shiraishi
  • Patent number: 9803526
    Abstract: The present invention relates to an exhaust treatment apparatus (1) for an internal combustion engine (5). The apparatus includes a catalyst chamber (15) containing a catalyst (35). One or more exhaust gas inlets (11 A-D) are provided for supplying exhaust gases from the internal combustion engine (5) to the catalyst chamber (C). An exhaust gas outlet (21) for supplying exhaust gases from the catalyst chamber to a turbocharger (25). An injection nozzle (19) is provided for introducing a reductant (23) into the exhaust gases between the catalyst (15) and the turbocharger (25). The reductant (23) and the exhaust gases can undergo mixing as they pass through the turbocharger (25). The catalyst (15) can have a three-dimensional open structure to facilitate the flow of exhaust gases. The invention also relates to a method of treating exhaust gases from an internal combustion engine (5).
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: October 31, 2017
    Assignee: Jaguar Land Rover Limited
    Inventor: Michael Davies
  • Patent number: 9784147
    Abstract: A mechanically simplified electric and fluid (gas, vapor or liquid) control for a piston engine, including an engine valve actuator system that eliminates rotating cam shafts and heavy internal combustion engine valve closing springs by using an electromagnet and an armature which is attracted by the electromagnet to initiate movement of both a fluid control valve and the engine valve. When the control valve is moved only slightly off its seat by the armature, fluid pressure instantly drives the control valve a much greater distance closing the engine valve. Opening and closing time is regulated independently. Engine valves are opened by reversing the fluid pressure balance across the control valve at the time selected.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: October 10, 2017
    Assignee: Thermal Power Recovery LLC
    Inventor: James V. Harmon, Sr.
  • Patent number: 9778143
    Abstract: A system and method are provided for estimating an operating parameter of an exhaust manifold of an engine. In the system, a flow value is determined that corresponds to a flow rate of exhaust gas through an EGR conduit fluidly coupled between the exhaust manifold and the intake manifold. The EGR conduit includes an exhaust gas cooler disposed in-line with the EGR conduit and a property of the exhaust gas exiting an exhaust gas outlet of the cooler is measured. The operating parameter of the exhaust manifold is estimated as a function of at least the flow value and the property of the exhaust gas exiting the exhaust gas outlet of the cooler. Illustratively, the operating parameter of the exhaust manifold may be exhaust manifold pressure and/or temperature.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: October 3, 2017
    Assignee: Cummins Inc.
    Inventors: John N. Chi, Indranil Brahma
  • Patent number: 9759126
    Abstract: A compound engine system including a Wankel engine having a recess defined in the peripheral wall of the rotor in each of the three rotating chambers, the recess having a volume of more than 5% of the displacement volume of the chambers. The expansion in the turbine section compensates for the relatively low expansion ratio of the rotary engine.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: September 12, 2017
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventor: Andre Julien