Patents Examined by Thao H Bui
  • Patent number: 9053811
    Abstract: According to one embodiment of the present invention, a method for refreshing memory includes receiving a synchronization command at a memory device. An internal refresh timer is reset within the memory device based on receiving the synchronization command. An internal refresh trigger is generated within the memory device based on the internal refresh timer reaching a predetermined value. A refresh of a memory array is performed within the memory device based on the internal refresh trigger.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: June 9, 2015
    Assignee: International Business Machines Corporation
    Inventors: Paul W. Coteus, Douglas J. Joseph, Kyu-hyoun Kim
  • Patent number: 9042182
    Abstract: A nonvolatile semiconductor memory device includes a memory cell array, a plurality of local sense amplifiers, a global sense amplifier and an address decoder. The address decoder is configured to switch between a first verification and a second verification. The first verification operates the plurality of local sense amplifiers and simultaneously verifies data of a plurality of memory cells connected to the plurality of local sense amplifiers. The second verification stops the plurality of local sense amplifiers, directly connects the local bit line connected to each of the local sense amplifiers with the global bit line, and simultaneously verifies data of the plurality of memory cells connected to the plurality of local sense amplifiers.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: May 26, 2015
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Mitsuharu Sakakibara
  • Patent number: 9042174
    Abstract: A non-volatile memory cell comprises a coupling device, a first and a second select transistor, and a first and a second floating gate transistor is disclosed. The coupling device is formed in a first conductivity region. The first select transistor is serially connected to the first floating gate transistor and the second select transistor. Moreover, the first select transistor, the first floating gate transistor, and the second select transistor are formed in a second conductivity region. The second floating gate transistor is formed in a third conductivity region, wherein the first conductivity region, the second conductivity region, and the third conductivity region are formed in a fourth conductivity region. The first conductivity region, the second conductivity region, and the third conductivity region are wells, and the fourth conductivity region is a deep well. The third conductivity region surrounds the first conductivity region and the second conductivity region.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: May 26, 2015
    Assignee: eMemory Technology Inc.
    Inventors: Wen-Hao Ching, Shih-Chen Wang
  • Patent number: 9036432
    Abstract: A method for controlling data write operation of a mass storage device is provided. The mass storage device has a controller and a memory unit. The method includes connecting the mass storage device to a host device, and receiving a voltage provided from the host device; sensing and monitoring whether the voltage is lower than a first predefined voltage; writing data to the mass storage device with a first frequency when the sensed voltage is higher than the first predefined voltage; and writing data to the mass storage device with a second frequency when the sensed voltage is lower than the first predefined voltage, wherein the second frequency is adjusted by decreasing the first frequency.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: May 19, 2015
    Assignee: Transcend Information, Inc.
    Inventor: Chun-Chieh Wang
  • Patent number: 9036401
    Abstract: Methods, devices, and systems associated with memory cell operation are described. One or more methods of operating a memory cell include charging a capacitor coupled to the memory cell to a particular voltage level and programming the memory cell from a first state to a second state by controlling discharge of the capacitor through a resistive switching element of the memory cell.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: May 19, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Roy E. Meade, John K. Zahurak
  • Patent number: 9030900
    Abstract: A semiconductor memory device includes a bit line sense amplification unit configured to sense/amplify data loaded on a bit line, and a driving control unit configured to supply a power line of the bit line sense amplification unit with an overdriving voltage in an overdriving period and supply an internal voltage line with a voltage of the power line of the bit line sense amplification unit in a discharge driving period.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: May 12, 2015
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sin-Hyun Jin, Sang-Jin Byeon
  • Patent number: 9025370
    Abstract: Memory devices comprise a plurality of memory cells, each memory cell including a memory element and a selection device. A plurality of first (e.g., row) address lines can be adjacent (e.g., under) a first side of at least some cells of the plurality. A plurality of second (e.g., column) address lines extend across the plurality of row address lines, each column address line being adjacent (e.g., over) a second, opposing side of at least some of the cells. Control circuitry can be configured to selectively apply a read voltage or a write voltage substantially simultaneously to the address lines. Systems including such memory devices and methods of accessing a plurality of cells at least substantially simultaneously are also disclosed.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: May 5, 2015
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, Jun Liu
  • Patent number: 9025369
    Abstract: According to one embodiment, a phase change memory includes a memory cell, a select transistor, and a memory cell array. The memory cell includes a chalcogenide wiring, resistance wirings and a cell transistor. The chalcogenide wiring becomes a heater. One end of a plurality of memory cells with sources and drains connected in series is connected to a source of the select transistor. The bit line is connected a drain of the select transistor. The memory cell array is obtained by forming a memory cell string.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Daisaburo Takashima
  • Patent number: 9007807
    Abstract: The present disclosure concerns a MRAM cell comprising a first tunnel barrier layer comprised between a soft ferromagnetic layer having a free magnetization and a first hard ferromagnetic layer having a first storage magnetization; a second tunnel barrier layer comprised between the soft ferromagnetic layer and a second hard ferromagnetic layer having a second storage magnetization; the first storage magnetization being freely orientable at a first high predetermined temperature threshold and the second storage magnetization being freely orientable at a second predetermined high temperature threshold; the first high predetermined temperature threshold being higher than the second predetermined high temperature threshold. The MRAM cell can be used as a ternary content addressable memory (TCAM) and store up to three distinct state levels. The MRAM cell has a reduced size and can be made at low cost.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 14, 2015
    Assignee: Crocus Technology SA
    Inventor: Bertrand Cambou
  • Patent number: 9007812
    Abstract: An object of one embodiment of the present invention is to propose a memory device in which a period in which data is held is ensured and memory capacity per unit area can be increased. In the memory device of one embodiment of the present invention, bit lines are divided into groups, and word lines are also divided into groups. The word lines assigned to one group are connected to the memory cell connected to the bit lines assigned to the one group. Further, the driving of each group of bit lines is controlled by a dedicated bit line driver circuit of a plurality of bit line driver circuits. In addition, cell arrays are formed on a driver circuit including the above plurality of bit line driver circuits and a word line driver circuit. The driver circuit and the cell arrays overlap each other.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 14, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Shunpei Yamazaki
  • Patent number: 9001601
    Abstract: A memory device includes a repair circuit including a fail bit location information table configured to store row and column addresses of a defective cell in a normal area of a memory cell array. The repair circuit also includes a row address comparison unit configured to compare the row address of the defective cell with a row address of a first access cell received from the outside, and to output a first row match signal when the defective cell's row address matches the row address of the first access cell, and a column address comparison unit configured to compare the column address of the defective cell with a column address of the first access cell received from the outside, and to output a first column address replacement signal if the column address of the defective cell is the same as the column address of the first access cell.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: April 7, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-pil Son, Chul-woo Park
  • Patent number: 9001577
    Abstract: This disclosure concerns memory cell sensing. One or more methods include determining a data state of a first memory cell coupled to a first data line, determining a data state of a third memory cell coupled to a third data line, transferring determined data of at least one of the first and the third memory cells to a data line control unit corresponding to a second data line to which a second memory cell is coupled, the second data line being adjacent to the first data line and the third data line, and determining a data state of the second memory cell based, at least partially, on the transferred determined data.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: April 7, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Matthew Goldman, Pranav Kalavade, Uday Chandrasekhar, Mark A. Helm
  • Patent number: 9001568
    Abstract: An embodiment of the invention discloses a method for testing a memory cell in an SRAM. The number of dummy memory cells on a single dummy word line used to drive the dummy bit lines is selected. A binary logical value is written to a memory cell in the SRAM. The single dummy word line and a word line containing the memory cell in the SRAM are driven to logical high values concurrently. A dummy bit line, driven by the dummy memory cells, drives an input of a buffer to a binary logical value stored in the dummy memory cells. An output of the buffer enables a sense amp to amplify a voltage developed across the bit lines electrically connected to the memory cell.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 7, 2015
    Assignee: Texas Instruments Incorporated
    Inventor: Srinivasa Raghavan Sridhara
  • Patent number: 8988920
    Abstract: A semiconductor memory device according to an embodiment comprises: a plurality of memory cells arranged in a first direction and a second direction; local bit lines connected to group of the memory cells; a global bit line to be commonly connected to a plurality of the local bit lines; and switch circuits connected between the local bit lines and the global bit line. The switch circuits connect the global bit line to one of the local bit lines, the one of the local bit lines being electrically connected to the memory cells of the group located at a position specified by select information of the first direction and the second direction.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Atsushi Kawasumi
  • Patent number: 8982657
    Abstract: A semiconductor device includes: a plurality of target lines to be driven; a plurality of target line drivers configured to drive the corresponding target lines in a logic level corresponding to a plurality of target line selection signals; a plurality of booster enable units configured to generate a booster enable signal by sensing whether a group of target lines that is obtained by grouping the target lines by a predetermined number is enabled or not; and a plurality of self-boosters configured to boost corresponding target lines by sensing levels of the corresponding target lines in response to the booster enable signal.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: March 17, 2015
    Assignee: SK Hynix Inc.
    Inventor: Jeongsu Jung
  • Patent number: 8982633
    Abstract: Techniques for providing a direct injection semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a direct injection semiconductor memory device including a first region connected to a bit line extending in a first orientation and a second region connected to a source line extending in a second orientation. The direct injection semiconductor memory device may also include a body region spaced apart from and capacitively coupled to a word line extending in the second orientation, wherein the body region is electrically floating and disposed between the first region and the second region. The direct injection semiconductor memory device may further include a third region connected to a carrier injection line extending in the second orientation, wherein the first region, the second region, the body region, and the third region are disposed in sequential contiguous relationship.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: March 17, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Srinivasa R. Banna, Michael A. Van Buskirk
  • Patent number: 8964444
    Abstract: A one-time programmable memory includes a first one-time programmable memory cell including a fuse core having an input terminal for receiving a trim signal, an output terminal for providing a sense signal, and a fuse. The fuse core conducts current through the fuse in response to the trim signal. The one-time programmable memory cell also includes a sense circuit having an input terminal coupled to the output terminal of the fuse core, and an output terminal for providing a termination signal, and a logic circuit having a first input terminal for receiving a program enable signal, a second input terminal for receiving a data signal, a third input terminal coupled to the output terminal of the sense circuit for receiving the termination signal, and an output terminal coupled to the input terminal of the fuse core for providing the trim signal.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: February 24, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Jefferson W. Hall, Josef Halamik, Pavel Londak
  • Patent number: 8958245
    Abstract: The non-volatile memory cell includes a coupling device and a first select transistor. The coupling device is formed in a first conductivity region. The first select transistor is serially connected to a first floating gate transistor and a second select transistor, all formed in a second conductivity region. An electrode of the coupling device and a gate of the first floating gate transistor are a monolithically formed floating gate; wherein the first conductivity region and the second conductivity region are formed in a third conductivity region; wherein the first conductivity region, the second conductivity region, and the third conductivity region are wells.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: February 17, 2015
    Assignee: eMemory Technology Inc.
    Inventors: Te-Hsun Hsu, Wei-Ren Chen, Wen-Hao Ching, Wen-Chuan Chang
  • Patent number: 8953396
    Abstract: A NAND interface having a reduced pin count configuration, in which all command and address functions and operations of the NAND are provided serially on a single serial command and address pin, and data is transmitted over data pins in response to commands and addresses received on the serial command and address pin.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: February 10, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Ebrahim Abedifard
  • Patent number: 8929156
    Abstract: A semiconductor memory device includes an internal clock generation unit configured to generate an internal clock including periodic pulses during a period of a test mode; a DQ information signal generation block configured to generate DQ information signals which are sequentially enabled, in response to the internal clock; and a data output block configured to output the DQ information signals to DQ pads during a period of the test mode.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: January 6, 2015
    Assignee: SK Hynix Inc.
    Inventor: Bok Rim Ko