Patents Examined by Tho Tran
  • Patent number: 8974387
    Abstract: Various embodiments are described and illustrated to calculate an insulin bolus, recommend such bolus, and provide reminder messages for performing an additional glucose test.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: March 10, 2015
    Assignee: LifeScan Scotland Limited
    Inventors: Ian Shadforth, David Price, Gretchen Anderson, Lorraine Comstock, Mary McEvoy, Douglas Graham, Alexander Strachan, Alistair Longmuir, Robert Cavaye, Gillian Teft
  • Patent number: 8945018
    Abstract: A blood flow measuring apparatus includes a sensor unit including a light emitter configured to emit light onto a measurement area and a light receiver configured to receive the light transmitted through the measurement area; at least one more light receiver configured to receive the light transmitted through the measurement area; and a control part configured to measure a blood flow state of the measurement area according to signals outputted by the light receivers. The light emitted by the light emitter is received by the light receivers arranged at different distances from the light emitter and the light receivers output the signals responsive to the received light. The control part measures the blood flow state of the measurement area by performing an arithmetic process to cancel a component of oxygen saturation in the blood, said component being included in the signals outputted by the light receivers.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: February 3, 2015
    Assignee: University of Tsukuba
    Inventor: Yoshiyuki Sankai
  • Patent number: 8914090
    Abstract: Disclosed herein is an analyte sensing device capable of continuously monitoring metabolic levels of a plurality of analytes. The device comprises an external unit, which, for example, could be worn around the wrist like a wristwatch or could be incorporated into a cell phone or PDA device, and an implantable sensor platform that is suitable, for example, for implantation under the skin. The external device and the internal device are in wireless communication. In one embodiment, the external device and the internal device are operationally linked by a feedback system. In one embodiment, the internal device is encapsulated in a biocompatible coating capable of controlling the local tissue environment in order to prevent/minimize inflammation and fibrosis, promote neo-angiogenesis and wound healing and this facilitate device functionality.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: December 16, 2014
    Assignee: The University of Connecticut
    Inventors: Faquir Jain, Fotios Papadimitrakopoulos, Diane Burgess, Deborah G. Grantham
  • Patent number: 8911378
    Abstract: A method for detecting cuff slippage in a blood pressure monitoring device includes starting a cuff inflation on the blood pressure monitoring device. A plurality of pressure samples is obtained when the cuff is inflating. A level of background noise is determined during the cuff inflation. The level of background noise is determined from the plurality of pressure samples. When the background noise is determined, a determination is made from the plurality of blood pressure readings whether a pressure pattern indicating cuff slippage is obtained.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: December 16, 2014
    Assignee: Welch Allyn, Inc.
    Inventors: Tyson B. Whitaker, Matthew J. Kinsley, Joseph D. Buchanan
  • Patent number: 8888711
    Abstract: A bi-directional flow sensor is adapted for reducing pneumatic noise during pressure sensing with a flow passing through the flow sensor. The flow sensor comprises a hollow, tubular member having a throat section disposed between a ventilator end and a patient end. A flow restrictor is disposed in the throat section and is adapted to measure differential pressure in the flow. A baffle is mounted at the ventilator end and is adapted to minimize non-axial flow at pressure taps located on opposing ends of the flow restrictor. The patient end includes a flow obstruction configured to promote uniform velocity across the flow at the pressure taps during exhalation flow from the patient end to the ventilator end. The flow sensor minimizes pneumatic noise to less than 0.1 LPM to allow accurate patient flow measurement and triggering of inhalation and exhalation phases at flow rates of 0.2 LPM.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: November 18, 2014
    Assignee: Carefusion 203, Inc.
    Inventors: Todd W. Allum, Malcolm R. Williams, Joseph Cipollone
  • Patent number: 8876724
    Abstract: Contact pressure sensing apparatus for use with exercise equipment sensors are described. An example apparatus includes a sensor to detect a physiological condition of a user of an exercise device through physical contact with the user and a pressure sensor to detect a contact pressure applied by the user to the sensor.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: November 4, 2014
    Assignee: Brunswick Corporation
    Inventor: Sherwin Twery
  • Patent number: 8870767
    Abstract: An endocapsule has a measurement chamber therein containing a sensor that detects at least one metabolic product of a specific bacterium in a hollow organ of a human or animal gastrointestinal tract. The endocapsule is introduced into the hollow organ wherein detection of the at least one metabolic product takes place.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: October 28, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Clemens Bulitta, Stefan Förtsch, Norbert Gläsel, Rainer Kuth, Bernhard Roas, Sebastian Schmidt, Rainer Graumann, Arne Hengerer, Ludwig Herbst
  • Patent number: 8834379
    Abstract: A system for providing an indication of cardiovascular function, includes a respiration input (1) for receiving a respiration-related signal indicative of a physical property of respiration gases administered to a patient. A hemodynamic input (2) is provided for receiving a hemodynamic-related signal indicative of a hemodynamic property. An inspiration detector (3) is provided for processing the respiration-related signal to detect times of inspiration and a measure of the size of the inspiration. A correlator (5) is provided for correlating the sizes of inspiration with the hemodynamic-related signal, to obtain the indication of cardiovascular function. The respiration-related signal is indicative of inspiration pressure, inspiration volume, or inspiration flow. The hemodynamic-related signal is indicative of blood pressure.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: September 16, 2014
    Assignee: Dräger Medical GmbH
    Inventor: Marc Van Houwelingen
  • Patent number: 8795185
    Abstract: A portable blood pressure measuring apparatus and a method therefor are provided. In the portable blood pressure measuring apparatus, a blood pressure measurer measures a wrist or finger blood pressure being an arterial pressure at a wrist or a finger, a Pulse Wave Velocity (PWV) measurer measures a PWV, a controller controls compensation of the wrist or finger blood pressure using the PWV so that the wrist or finger blood pressure corresponds to a brachial blood pressure, and a display displays the compensated wrist or finger blood pressure.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: August 5, 2014
    Assignee: Samsung Electronics Co., Ltd
    Inventor: Jae-Geol Cho
  • Patent number: 8795189
    Abstract: A system and method for determining pulmonary performance from transthoracic impedance measures is provided. Transthoracic impedance measures collected by an implantable medical device are correlated to pulmonary functional measures. The pulmonary functional measures are grouped by respiratory pattern. Pulmonary performance is evaluated. Differences are determined by comparing the pulmonary functional measures for each respiratory pattern to the pulmonary functional measures for at least one previous respiratory pattern. A trend is identified from the differences. An alert is generated upon sufficient deviation of the trend from a threshold criteria.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: August 5, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Quan Ni, Jesse W. Hartley, Kent Lee, Jeffrey E. Stahmann
  • Patent number: 8761868
    Abstract: A medical device system for comparing a cardiopulmonary signal to a brain signal. In one embodiment of the invention, a medical device system is provided that includes a brain monitoring element, respiratory monitoring element and a processor. The processor is configured to receive a brain signal from the brain monitoring element and a respiratory signal from the respiratory monitoring element. The processor is further configured to compare the brain signal to the respiratory signal. Methods of comparing a brain signal to a cardiopulmonary signal are also provided.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: June 24, 2014
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Nina M. Graves
  • Patent number: 8747326
    Abstract: A manual pressurization electronic sphygmomanometer includes a specific component detection unit for detecting a synthetic wave of a manual fluctuation wave and a pressure pulse wave as a specific component from a cuff pressure signal obtained during pressurization; a derivation processing unit for deriving a pressurization target value based on the detection result of the specific component detection unit; and a display unit for notifying to urge pressurization up to the pressurization target value. The derivation processing unit calculates a pulse wave component based on the waveform before and after the specific component and the waveform of the specific component, and determines a value obtained by adding a predetermined value to the systolic blood pressure value estimated based on the amplitude of the pulse wave component as the pressurization target value.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: June 10, 2014
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventor: Hiroyuki Kinoshita
  • Patent number: 8740804
    Abstract: Provided are a blood pressure measuring apparatus capable of effectively eliminating the influence which the volume change in an upstream portion of an occluding cuff has on a pulse wave detection cuff in an oscillometric double-cuff system, increasing the S/N ratio of systolic blood pressure detection, and accurately measuring the blood pressure with an inexpensive arrangement, a cuff, and a blood pressure measuring method. The apparatus includes a first pipe (106) connected to an occluding air bag (108) and sub air bag (109). The first pipe is connected to the sub air bag, and the sub air bag is connected to the occluding air bag via an entirely foldable rod shape member (111) capable of maintaining a hollow portion. The sub air bag is laid over the occluding air bag by folding a middle pipe.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: June 3, 2014
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Takahiro Souma
  • Patent number: 8740803
    Abstract: A system and method for processing oscillometric data from a plurality of pressure steps to determine the blood pressure of a patient. A heart rate monitor connected to the patient acquires the patient's heart rate. A time-to-frequency domain converter receives oscillometric data and converts the oscillometric data into the frequency domain. Based upon the calculated heart rate, the system and method filters the frequency domain oscillometric signal with pass bands centered at the fundamental frequency and at least one fundamental frequency. The energy of the frequency domain signal within the pass bands is compared to at least a portion of the energy of the frequency domain oscillometric signal outside of the pass bands. Based upon the comparison, the signal determines whether the signal at the current pressure step should be utilized in calculating the blood pressure of the patient.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: June 3, 2014
    Assignee: General Electric Company
    Inventors: Lawrence T. Hersh, Sai Kolluri
  • Patent number: 8744562
    Abstract: A medical device system that includes a brain monitoring element, cardiac monitoring element and a processor. The processor is configured to receive a brain signal from the brain monitoring element and a cardiac signal from the cardiac monitoring element. The processor is further configured to compare the brain signal to the cardiac signal. A method of comparing a brain signal to a cardiac signal is also provided.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: June 3, 2014
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Nina M. Graves
  • Patent number: 8721558
    Abstract: A device for the in vivo determination of the blood flow rate in a patient's blood vessel includes a microelectrode arrangement provided for placement in the blood vessel, an electrical power source which provides excitation energy having physiologically harmless parameters for obtaining a measured signal, a signal detector for detecting an electrical measured signal resulting from the blood flow in the presence of the excitation energy at measuring electrodes of the microelectrode arrangement, and a signal evaluation device, connected to the signal detector, for determining the blood flow rate on the basis of the measured signal.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: May 13, 2014
    Assignee: BIOTRONIK CRM Patent AG
    Inventors: Gernot Kolberg, Klaus Bartels
  • Patent number: 8702613
    Abstract: Devices, systems, and methods for determining fractional flow reserve. At least one method for determining fractional flow reserve of the present disclosure comprises the steps positioning a device comprising at least two sensors within a luminal organ at or near a stenosis, wherein the at least two sensors are separated a predetermined distance from one another, operating the device to determine flow velocity of a second fluid introduced into me luminal organ to temporarily displace a first fluid present within the luminal organ, and determining fractional flow reserve at or near the stenosis based upon the flow velocity, a mean aortic pressure within the luminal organ, and at least one cross-sectional area at or near the stenosis. Devices and systems useful for performing such exemplary methods are also disclosed herein.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 22, 2014
    Assignee: 3DT Holdings, LLC
    Inventor: Ghassan S. Kassab
  • Patent number: 8690785
    Abstract: A method and an apparatus for non-interfering blood pressure measurements, relates to an apparatus for continuously monitoring blood pressure for patients at home or at work. The apparatus includes an extra-corporal sensor for blood pressure determination with a flexible housing adapted to be attached to the body of a living being proximate to an artery, and an electronic circuit for wireless coupling to a remote transceiver in accordance with the blood pressure in the artery, the remote transceiver adapted for wireless coupling to the sensor for generation of a pressure signal in accordance with the blood pressure in the artery, and a processor connected to the remote transceiver for reception of the pressure signal and adapted to estimate systolic and diastolic pressure based on the signal.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: April 8, 2014
    Assignee: Sense A/S
    Inventor: Lars Lading
  • Patent number: 8690788
    Abstract: A living body information measuring apparatus can suppress the bulge of tendons due to the bending of a wrist or fingers, and has good contact intimacy with arteries, making it possible to make accurate measurements of living body information. A cuff is formed of: a compression fluid bag which is provided for detecting a pulse wave signal, and which can be expanded and contracted by being supplied with a fluid; and two auxiliary fluid bags which are provided on an outer side of the compression fluid bag, and which can be expanded and contracted by being supplied with the fluid. The auxiliary fluid bags have a two-layer structure, and are connected to the compression fluid bag via opening portions, while the auxiliary fluid bags are respectively divided from each other. The compression fluid bag compresses the tendons, the radial artery and the ulnar artery, while the auxiliary fluid bag and the auxiliary fluid bag compress the radial artery and the ulnar artery, respectively.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: April 8, 2014
    Assignee: Panasonic Corporation
    Inventors: Kazuhiro Ide, Manabu Hamamoto, Nobuo Iwai
  • Patent number: 8663108
    Abstract: In one aspect, there is disclosed a system and method for rapidly and passively identifying changes in the number of open pores in the skin of an individual in response to a stimulus without contacting the individual. This is accomplished by using a thermal camera that is sensitive in the mid-wave or long-wave infrared (3-5 or 8-14 ?meters) to observe and/or count the number of skin pores opening in response to questions being asked of the individual.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 4, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Barbara L. O'Kane