Patents Examined by Thomas K Quigley
  • Patent number: 11725634
    Abstract: A transition piece (140) for a wind turbine tower (110) is provided, that is configured to be installed on a tower foundation (111) and to carry a tower piece (113). It comprises a high voltage joint (10) with grid input and output terminals (11, 12) and WTG connecting input and output terminals (14, 13). The grid input terminal (11) is configured for receiving and connecting to an array cable (21) from a power grid (20). The WTG connecting output terminal (13) is operatively connected to the grid input terminal (11) for receiving and connecting to an input cable (23) leading to a switchgear (30). The WTG connecting input terminal (14) is configured for receiving and connecting to an output cable (24) from the switchgear (30). The grid output terminal (12) is operatively connected to the WTG connecting input terminal (14) for receiving and connecting to an array cable (22) leading to the power grid (20).
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: August 15, 2023
    Assignee: Vestas Wind Systems A/S
    Inventors: Thor Thiim Hansen, Christian Fuglsbjerg, Slawomir Michaluk, Jeppe Søe
  • Patent number: 11725628
    Abstract: The invention relates to a method for controlling power generation of a power plant which comprises power generating units including a wind turbine. At least one power unit is operated in a non-controlled mode with a non-curtailed power set-point, and at least one other power unit is operated in a controlled mode with a curtailed power set-point. Positive capabilities are determined as the difference between the available power and the curtailed power production. The total positive capability is determined as the sum of positive capabilities. The proportion of the power units intended to be operated in the non-controlled mode is determined as a function of the total positive capability. Dependent on the difference between the determined proportion and an actual proportion the status from non-controlled mode to controlled mode, or vice versa, of one or more of the power units is changed.
    Type: Grant
    Filed: May 27, 2019
    Date of Patent: August 15, 2023
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Jacob Barsøe KjÆrgaard, Steve Jessen
  • Patent number: 11719226
    Abstract: A method of controlling a wind turbine including a plurality of rotor blades, a first controller for controlling an adaptive flow regulating system having a plurality of individually controllable adaptive flow regulating devices arranged on the rotor blades, and a second controller for controlling a pitch regulating system for regulating a pitch angle of each rotor blade. The method includes (a) determining a diagnostic value indicative of an operational efficiency of the adaptive flow regulating system, (b) determining a first gain value for the first controller and a second gain value for the second controller based on the diagnostic value, (c) applying the first gain value to control signals for the adaptive flow regulating system generated by the first controller, and (d) applying the second gain value to control signals for the pitch regulating system generated by the second controller, is provided.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: August 8, 2023
    Assignee: SIEMENS GAMESA RENEWABLE ENERGY A/S
    Inventors: Per Egedal, Gustav Hoegh
  • Patent number: 11719219
    Abstract: Systems and methods for use in capturing energy from natural resources. In one form, the systems and methods capture energy from natural resources, such as movement of fluid in a body of water, and convert it into electrical energy.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: August 8, 2023
    Assignee: P TECH, LLC
    Inventors: Peter M. Bonutti, Justin E. Beyers, Tonya M. Bierman
  • Patent number: 11713746
    Abstract: A system for and a method of frequency control of a variable-speed wind power generator are proposed. According to an implementation example of the present technology, there is an advantage in which the present technology may be involved in a frequency control of the system, thereby stabilizing the frequency of the system by controlling the frequency of the variable-speed wind power generator on the basis of a gain being varied according to a speed of a rotor.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: August 1, 2023
    Inventors: Hyenjun Choi, Jihoon Park, Hyewon Choi
  • Patent number: 11708815
    Abstract: A system and method are provided for controlling a wind turbine. Accordingly, a controller of the wind turbine detects a loss of traction of the slip coupling based on a difference between data indicative of a rotor operating parameter and data indicative of a generator operating parameter. The controller then determines an angle of slip corresponding to the loss of traction as a function of the difference. Based, at least partially on the angle of slip, a degradation value for the slip coupling is determined. A control action is implemented based on the degradation value.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: July 25, 2023
    Assignee: General Electronic Company
    Inventors: Dayu Huang, Hullas Sehgal, Conner Brooks Shane, Kalpesh Singal
  • Patent number: 11703032
    Abstract: An optimal dispatching method and system for a wind power generation and energy storage combined system are provided. Uncertainty of a wind turbine output is characterized based on spatio-temporal coupling of the wind turbine output and an interval uncertainty set. Compared with a traditional symmetric interval uncertainty set, the uncertainty set that considers spatio-temporal effects effectively excludes some extreme scenarios with a very small probability of occurrence and reduces conservativeness of a model. A two-stage robust optimal dispatching model for the wind power generation and energy storage combined system is constructed, and a linearization technology and a nested column-and-constraint generation (C&CG) strategy are used to efficiently solve the model.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: July 18, 2023
    Assignee: North China Electric Power University
    Inventors: Shiwei Xia, Panpan Li, Liangyun Song, Jixian Qu, Yuehui Huang
  • Patent number: 11698053
    Abstract: A system and method are provided for controlling a wind turbine. Accordingly, a controller of the wind turbine detects a transient grid event and generates a torque command via a drive-train-damper control module. The torque command is configured to establish a default damping level of a torsional vibration resulting from the transient grid event. The controller also determines at least one oscillation parameter relating to the torsional vibration and determines a target generator torque level based thereon. The target generator torque level corresponds to an increased level of damping the torsional vibration relative to the default damping level.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: July 11, 2023
    Assignee: General Electric Renovables Espana, S.L.
    Inventors: Jishnu Kavil Kambrath, Veena Padmarao, Kapil Jha, Arvind Kumar Tiwari
  • Patent number: 11692527
    Abstract: The invention provides a method for controlling a wind turbine, including predicting behaviour of one or more wind turbine components such as a wind turbine tower over a prediction horizon using a wind turbine model that describes dynamics of the one or more wind turbine components or states. The method includes determining behavioural constraints associated with operation of the wind turbine, wherein the behavioural constraints are based on operational parameters of the wind turbine such as operating conditions, e.g. wind speed. The method includes using the predicted behaviour of the one or more wind turbine components in a cost function, and optimising the cost function subject to the determined behavioural constraints to determine at least one control output, such as blade pitch control or generator speed control, for controlling operation of the wind turbine.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: July 4, 2023
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Fabio Caponetti, Tobias Gybel Hovgaard, Christian Jeppesen, Silvia Estelles Martinez
  • Patent number: 11692526
    Abstract: Methods and Apparatuses for rotational speed avoidance control of a wind turbine, and the wind turbine are provided. An exemplary method includes: identifying whether a wind turbine operates repeatedly traversing a rotational speed avoidance range, based on statistical information about a rotational speed of a generator being in the rotational speed avoidance range; and adjusting a parameter of a pitch control system and/or a parameter of an electromagnetic torque control of the wind turbine based on the statistical information about the rotational speed being in the rotational speed avoidance range, in response to determining that the wind turbine operates repeatedly traversing the rotational speed avoidance range.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: July 4, 2023
    Assignee: BEIJING GOLDWIND SCIENCE & CREATION WINDPOWER EQUIPMENT CO., LTD.
    Inventor: Xinli Zhang
  • Patent number: 11695364
    Abstract: A motor/generator/transmission system includes: an axle; a stator ring having a plurality of stator coils disposed around the periphery of the stator ring, wherein each phase of the plurality of stator coils includes a respective set of multiple parallel non-twisted wires separated at the center tap with electronic switches for connecting the parallel non-twisted wires of each phase of the stator coils all in series, all in parallel, or in a combination of series and parallel; a rotor support structure coupled to the axle; a first rotor ring and a second rotor ring each having an axis of rotation coincident with the axis of rotation of the axle, at least one of the first rotor ring or the second rotor ring being slidably coupled to the rotor support structure and configured to translate along the rotor support structure in a first axial direction or in a second axial direction.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: July 4, 2023
    Assignee: Falcon Power, LLC
    Inventors: Harley C. McDonald, James L. Bailey, Matthew C. McDonald
  • Patent number: 11674500
    Abstract: A method for controlling a wind energy farm is disclosed. A wake state of the wind energy farm is determined, including determining wake chains defining wake relationships among the wind turbines of the wind farm under the current wind conditions. For at least one of the wind turbines of the wind energy farm, a lifetime usage is estimated, based on an accumulated load measure for the wind turbine. In the case that the estimated lifetime usage is below a predefined lifetime usage limit, the wind turbine is operated in an overrated state, while monitoring wake effects at each of the wind turbines. In the case that a downstream wind turbine detects wake effects above a predefined wake threshold level, at least one wind turbine having an upstream wake relationship with the downstream wind turbine is requested to decrease the generated wake, e.g. by decreasing power production.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: June 13, 2023
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Jacob Deleuran Grunnet, Anders Steen Nielsen
  • Patent number: 11649804
    Abstract: A system and method are provided for controlling a wind turbine of a wind farm. Accordingly, a controller implements a first model to determine a modeled performance parameter for the first wind turbine. The modeled performance parameter is based, at least in part, on an operation of a designated grouping of wind turbines of the plurality of wind turbines, which is exclusive of the first wind turbine. The controller then determines a performance parameter differential for the first wind turbine at multiple sampling intervals. The performance parameter differential is indicative of a difference between the modeled performance parameter and a monitored performance parameter for the first wind turbine. A second model is implemented to determine a predicted performance parameter of the first wind turbine at each of a plurality of setpoint combinations based, at least in part, on the performance parameter differential the first wind turbine.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: May 16, 2023
    Assignee: General Electric Renovables Espana, S.L.
    Inventors: Samuel Bryan Shartzer, Scott Charles Evans, Arunvenkataraman Subramanian, Dhiraj Arora, Samuel Davoust
  • Patent number: 11649805
    Abstract: A modular wind turbine system and a method of use thereof are provided. The system comprises: a mounting frame; a fixed toroidal support structure attached to the mounting frame, the toroidal support structure having a concave portion and a convex portion; a wind turbine located proximal to the concave portion of the toroidal support structure, wherein the wind turbine travels about at least a portion of the concave portion of the toroidal support structure; and a first baffle, wherein the first baffle extends about the portion of the concave portion of the toroidal support structure about which the first turbine travels, wherein the baffle surrounds a portion of the wind turbine opposite the fixed toroidal support structure, and wherein the baffle includes at least one component selectively variably adjustable so as to vary the force, direction, or disruption of flow of fluid thereby, relative to the wind turbine.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: May 16, 2023
    Assignee: KKR IP LLC
    Inventors: Karen Anne Paré, James Work Bailar
  • Patent number: 11643168
    Abstract: A passive generator system for a marine vessel using an intake manifold having an opening at the bottom of the hull of the vessel. The intake manifold tapers to a point at the rear of the opening and extends upward to an intake funnel that reduces down to a conduit. The conduit has a first portion angled relative to the opening which joins to a second portion at an elbow. The second portion of the conduit extends horizontally to a rear of the vessel, to a conduit exit where water can exit the conduit. An impeller is location in the first portion of the conduit that drives a generator through a shaft between the impeller and the generator, the shaft passing through a top of the first portion of the conduit.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: May 9, 2023
    Inventor: Victor Rafael Cataluna
  • Patent number: 11639710
    Abstract: Systems and methods of autonomous farm-level control and optimization of wind turbines are provided. Exemplary embodiments comprise a site controller running on a site server. The site controller collects and analyzes yaw control data of a plurality of wind turbines and wind direction data relating to the plurality of wind turbines. The site server determines collective wind direction across an area occupied by the plurality of wind turbines and sends yaw control signals including desired nacelle yaw position instructions to the plurality of wind turbines. The site controller performs wake modeling analysis and determines desired nacelle positions of one or more of the plurality of wind turbines. The desired nacelle yaw position instructions systematically correct static yaw misalignment for all of the plurality of wind turbines. Embodiments of the disclosure provide means to perform whole site or partial site level controls of the yaw controllers of a utility scale wind turbine farm.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: May 2, 2023
    Assignee: WindESCo, Inc.
    Inventors: Nathan L. Post, Danian Zheng, Peter Bachant, Mohit Dua
  • Patent number: 11635059
    Abstract: Methods and apparatus for reducing peak power consumption of a grid connected power plant having a plurality of wind turbines. In response to determining that a power production value of the power plant is below a power threshold, one method includes: after a first time delay of a first group of one or more wind turbines, control the first group to operate in a power saving mode for a predefined first power saving period; and after a first time delay of a second group of one or more other wind turbines, control the second group to operate in the power saving mode for a predefined second power saving period. The first time delay of the first group is less than the first time delay of the second group and the power saving mode inhibits a power consuming activity for the wind turbines operating in the power saving mode.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: April 25, 2023
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Mu Wei, Vinu Vijayan, Eric German, Brian Dial-Lapcewich
  • Patent number: 11635060
    Abstract: A method for operating a wind turbine includes determining one or more loading and travel metrics or functions thereof for one or more components of the wind turbine during operation of the wind turbine. The method also includes generating, at least in part, at least one distribution of cumulative loading data for the one or more components using the one or more loading and travel metrics during operation of the wind turbine. Further, the method includes applying a life model of the one or more components to the at least one distribution of cumulative loading data to determine an actual damage accumulation for the one or more components of the wind turbine to date. Moreover, the method includes implementing a corrective action for the wind turbine based on the damage accumulation.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: April 25, 2023
    Assignee: General Electric Company
    Inventors: Dayu Huang, Frederick Wilson Wheeler, George Theodore Dalakos, Ameet Shridhar Deshpande, Su Liu
  • Patent number: 11624349
    Abstract: A method and an apparatus for controlling noise of a wind turbine. The method includes: determining a noise-influencing sector of the wind turbine based on a position of the wind turbine and a position of a noise-influencing site; acquiring a current wind direction; determining whether the wind turbine under the current wind direction operates in the noise-influencing sector; and limiting output power of the wind turbine, and increasing, after the wind turbine goes out from the noise-influencing sector and the output power reaches a rated power, the output power, in a case that the determination is positive.
    Type: Grant
    Filed: September 29, 2018
    Date of Patent: April 11, 2023
    Assignee: BEIJING GOLDWIND SCIENCE & CREATION WINDPOWER EQUIPMENT CO., LTD.
    Inventor: Fashun Ou
  • Patent number: 11626775
    Abstract: The disclosure is directed to an apparatus for generating energy in response to a vehicle wheel rotation. The apparatus may include a first roller comprising a curved roller surface configured to be positioned in substantial physical contact with a first wheel of the vehicle. The first roller may be configured to rotate in response to a rotation of the first wheel. The apparatus may further include a first shaft rotatably couplable to the first roller such that rotation of the first roller causes the first shaft to rotate. The apparatus may further include a first generator operably coupled to the first shaft. The generator may be configured to generate an electrical output based on the rotation of the first shaft and convey the electrical output to an energy storage device or to a motor of the vehicle that converts electrical energy to mechanical energy to rotate one or more wheels of the vehicle.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: April 11, 2023
    Inventor: Anthony Macaluso