Patents Examined by Thomas K Quigley
  • Patent number: 11394324
    Abstract: A method for operating a multi-level bridge power converter of an electrical power system includes connecting a plurality of phases of the power converter to a common terminal at a DC side of the power converter so as to effectively equate the plurality of phases at a common electrical potential. The method may also include monitoring, via a controller, a plurality of devices of the power converter for faults. Upon detection of a fault in one or more of the plurality of devices, the method includes activating, via the controller, one or more protection devices of a crowbar of the power converter to prevent additional faults from occurring in remaining devices of the plurality of devices by diverting energy away from the remaining devices of the plurality of devices.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: July 19, 2022
    Assignee: General Electric Company
    Inventors: Bacil Shaqqo, Fernando Arturo Ramirez Sanchez, Steven Wade Sutherland
  • Patent number: 11384730
    Abstract: A method for controlling a multirotor wind turbine is disclosed. A first operational state of each of the energy generating units of the wind turbine is obtained. A difference in thrust acting on at least two of the energy generating units is detected. At least one constraint parameter of the set of operational constraints is adjusted in accordance with prevailing operating conditions and in accordance with the detected difference in thrust, and a new operational state for at least one of the energy generating units is derived, based on the at least one adjusted constraint parameter, the new operational state(s) counteracting the detected difference in thrust. Finally, the wind turbine is controlled in accordance with the new operational states for the energy generating units.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 12, 2022
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Søren Dalsgaard, Jesper Lykkegaard Neubauer, Kim Hylling Sørensen, Jacob Brøchner, Erik Carl Lehnskov Miranda, Peter Bøttcher, Julio Xavier Vianna Neto, Torben Petersen
  • Patent number: 11372384
    Abstract: A method for adjusting a multi-dimensional operating space of a wind turbine includes receiving, via a central multi-dimensional operating space controller, a plurality of signals from a plurality of requestors of modified operating space. Each of the plurality of signals includes a data structure having requested set points for a plurality of dimensions in the operating space. The method also includes tracking, via the central multi-dimensional operating space controller, current set points for the plurality of dimensions in the operating space. Further, the method includes dynamically determining, via the central multi-dimensional operating space controller, an output signal based on the requested set points, the output signal comprising one or more changes for the current set points for the plurality of dimensions in the operating space. Moreover, the method includes controlling the wind turbine based on the output signal so as to provide a modified multi-dimensional operating space.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: June 28, 2022
    Assignee: General Electric Company
    Inventor: Robert Peter Slack
  • Patent number: 11371103
    Abstract: An energy recapturing apparatus is disclosed. The energy recapturing apparatus is housed within a frame that is configured to fit within a preexisting fluid passageway. The frame is further attached to a sliding mechanism, which enables the frame to be easily removed from the preexisting fluid passageway. Further, the frame is configured to accept at least one turbine that contains a plurality of blades. The turbine is able to convert the energy of fluid movement into electricity.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: June 28, 2022
    Assignee: Alternative Sustainability IP LLC
    Inventor: John A. Stevens
  • Patent number: 11365719
    Abstract: A method for forecasting power production of at least one wind turbine, the wind turbine forming part of a wind farm arranged at a site. Global weather forecast data is received at a central data centre. A site specific forecast is then generated at the central data centre, based on the global weather forecast data. The site specific forecast from the central data centre is sent to a local data centre, e.g. arranged at the site of the wind farm. Site specific data is received at the local data centre and comprises site specific weather data and/or site specific wind turbine data measured at the site. The site specific forecast is then updated at the local data centre, using the site specific data. Finally, a power production forecast of the at least one wind turbine is generated based on the updated site specific forecast.
    Type: Grant
    Filed: May 27, 2019
    Date of Patent: June 21, 2022
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Tomislav Maric, Martin Qvist, Line Storelvmo Holmberg
  • Patent number: 11359605
    Abstract: A generator module and a wind turbine having the same are provided according to the present application. The generator module includes a generator module housing, a generator unit and a generator rotating shaft. The generator unit is arranged in the generator module housing and includes a rotor and a stator. One end of the generator rotating shaft is connected to the rotor, and the generator rotating shaft is provided with a belt pulley. The generator module according to the present application may be flexibly arranged above a nacelle or inside the nacelle according to requirements, and may be separately replaced and maintained as an independent subsystem, which reduces the maintenance cost.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: June 14, 2022
    Assignee: XINJIANG GOLDWIND SCIENCE & TECHNOLOGY CO., LTD.
    Inventors: Qinghu Wu, Zhanhai Wu, Yaosong Liu
  • Patent number: 11362567
    Abstract: Electrical power generation in turbine engines in provided by a permanent magnet that emits a first magnetic field and is disposed on a first rotor assembly of a turbine engine; an armature winding connected to a second rotor assembly of the turbine engine such that the armature winding is positioned within the first magnetic field; a resonant emitter configured to receive an electrical power input from the armature winding to generate a second magnetic field of at least a predefined frequency when the first rotor assembly rotates relative to the second rotor assembly; and a resonant receiver disposed on an enclosure of the turbine engine, positioned to receive the second magnetic field and convert the second magnetic field into an electrical power output.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: June 14, 2022
    Assignee: THE BOEING COMPANY
    Inventor: Shengyi Liu
  • Patent number: 11362611
    Abstract: The present disclosure is directed to an electric generator and motor transmission system that is capable of operating with high energy, wide operating range and extremely variable torque and RPM conditions. In accordance with various embodiments, the disclosed system is operable to: dynamically change the output “size” of the motor/generator by modularly engaging and disengaging rotor/stator sets as power demands increase or decrease; activate one stator or another within the rotor/stator sets as torque/RPM or amperage/voltage requirements change; and/or change from parallel to series winding configurations or the reverse through sets of 2, 4, 6 or more parallel, three-phase, non-twisted coil windings with switchable separated center tap to efficiently meet torque/RPM or amperage/voltage requirements.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: June 14, 2022
    Assignee: FALCON POWER, LLC
    Inventors: James L. Bailey, Harley C. McDonald
  • Patent number: 11353004
    Abstract: A method and a wind turbine are provided. The wind turbine includes a gearless generator that is a synchronous generator and includes a stator and a generator rotor. The wind turbine includes a generator filter with modifiable filter properties that is coupled to the stator and configured to filter a stator current. The wind turbine includes a filter controller configured to control the generator filter.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: June 7, 2022
    Assignee: Wobben Properties GmbH
    Inventors: Alfred Beekmann, Wojciech Giengiel, Simon Schrobsdorff
  • Patent number: 11355934
    Abstract: Provided is an arrangement for producing electric energy, including: a generator having plural winding sets; plural converters each connected to one of the winding sets; at least two transformers, each connected at a low voltage side to output terminal of at least one converter; and a control portion connected to control the converters.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: June 7, 2022
    Inventors: Paul Godridge, Matthew Robert Anthony Kilpin, Brian Rasmussen
  • Patent number: 11349323
    Abstract: An engine includes at least one piston, a rotatable crankshaft, a starter motor, a lithium-ion battery, and a charging system. The rotatable crankshaft is coupled to the at least one piston. The starter motor is configured to selectively initiate rotation of the crankshaft. The lithium-ion battery is in electrical communication with the starter motor and has at least one cell. The charging system is powered by motion of at least one component of the engine. The charging system provides energy to the lithium-ion battery to charge the lithium-ion battery. The engine has a starting condition, a running condition, and a stopping condition. The charging system continuously applies a voltage potential to the at least one cell while the engine is in a running condition.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: May 31, 2022
    Assignee: Briggs & Stratton, LLC
    Inventors: Jeffrey M Zeiler, Richard J. Gilpatrick
  • Patent number: 11322943
    Abstract: A method for controlling the rebuilding of an electrical supply network, wherein the electrical supply network has a first network section and at least one further network section, at least one wind farm is connected to the first network section, the wind farm can be controlled via a wind farm control room, the first network section is coupled to the at least one further network section via at least one switching device in order to transmit electrical energy between the network sections, the at least one switching device is set up to disconnect the first network section from the at least one further network section in the event of a fault, a network control station is provided for the purpose of controlling the at least one switching device, wherein, in the event of a fault during which a network fault acting on the first network section occurs, the first network section is disconnected from the at least one further network section by the at least one switching device, the wind farm control room interchanges
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: May 3, 2022
    Assignee: Wobben Properties GmbH
    Inventor: Johannes Brombach
  • Patent number: 11319925
    Abstract: A method for wind turbine tower damping is disclosed, as well as an associated controller and wind turbine. The method comprises determining, using one or more sensor signals, dynamic state information for a tower of a wind turbine during power production, wherein the dynamic state information comprises a tower frequency. The method further comprises determining at least one control loop gain value using the tower frequency, and generating, using the at least one control loop gain value, one or more control signals for controlling a rotational speed of a rotor of the wind turbine.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: May 3, 2022
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Fabio Caponetti, Jesper Sandberg Thomsen
  • Patent number: 11306701
    Abstract: A method for controlling a wind turbine is disclosed. During full load operation, a power reference value, Pref, representing a power level to be supplied to the power grid by the wind turbine, is received, and the wind turbine is controlled in order to produce an output power which is at or near the power reference value, Pref, while maintaining a constant torque on the generator. In the case that the produced output power of the wind turbine exceeds the power reference value, Pref, excess produced energy is stored in the energy storage system, and in the case that the produced output power of the wind turbine is below the power reference value, Pref, stored energy is retrieved from the energy storage system. A power level being equal to the power reference value, Pref, is supplied to the power grid.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: April 19, 2022
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Julio Xavier Vianna Neto, Germán Claudio Tarnowski, Mads Blumensaat, Torben Petersen, Søren Dalsgaard
  • Patent number: 11309816
    Abstract: A method and apparatus for operating a converter system of a wind turbine for exchanging electrical power with an electrical supply grid at a grid connection point are provided. In the method and apparatus, the converter system is operated in a normal operating mode. An overload situation affecting the converter system is detected and operation of the converter system is changed to an overload operating mode when the overload situation is detected. An average switching frequency for generating an output current is reduced in the overload operating mode of the converter system in comparison with the normal operating mode, a higher load is permitted on the converter system, which may be in the form of an increased temperature or an increased output current, in the overload operating mode of the converter system for a predetermined maximum overload period.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: April 19, 2022
    Assignee: Wobben Properties GmbH
    Inventor: Johannes Brombach
  • Patent number: 11309815
    Abstract: The invention related to a control method for operating a synchronous machine, the machine comprising an exciter connected to a synchronous generator and a controller (40) for controlling the machine field excitation. The method comprises the steps of predefining a stable operation torque derivative range within which a stable operation of the machine occurs, performing a torque measuring or calculating for the machine, calculating the derivative of said torque, determining whether the calculated torque derivative is within the predefined stable operation torque derivative range for the machine, and, if the torque derivative is not within the predefined stable operation torque derivative range, modifying the machine field excitation to bring the torque derivative within the predefined stable operation torque derivative range.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: April 19, 2022
    Assignee: INDAR ELECTRIC S.L.
    Inventors: Iker Garmendia Olarreaga, Alexander Galarraga Telleria, Nestor Campo Caballero
  • Patent number: 11300107
    Abstract: Provided is a system for determining an amount of oscillating movement of a wind turbine, the wind turbine including a tower, a non-rotating upper part supported by the tower, a rotor having a rotor axis, and a generator for generating electric power. The system includes (a) a sensor unit adapted to provide a rotor speed signal indicative of a rotational speed of the rotor relative to the non-rotating upper part, (b) a filtering unit adapted to, based on the rotor speed signal provided by the sensor unit, provide a filtered signal including information associated with an oscillating movement of the wind turbine, and (c) a processing unit adapted to determine the amount of oscillating movement based on the filtered signal provided by the filtering unit. Furthermore, a wind turbine and a method are described.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: April 12, 2022
    Assignee: SIEMENS GAMESA RENEWABLE ENERGY A/S
    Inventors: Samuel H. Hawkins, Gustav Hoegh
  • Patent number: 11300101
    Abstract: The present invention relates to a method for controlling a power plant for reducing spectral disturbances in an electrical grid being operative connected to the power plant, the power plant comprising a plant controller, at least one wind turbine and at least one auxiliary energy source, wherein the at least one wind turbine comprises a rotor adapted to drive a power generator via a shaft, wherein the generator is connectable with the electrical grid, and at least one damping controller configured to compensate structural oscillations of the wind turbine by controlling a torque on the shaft, wherein the at least one damping controller is capable of setting a limit of a control action on the shaft, the method comprising the steps of determining disturbance information for the power plant in the form of an electrical disturbance at a point of measurement electrically connected to the power plant, determining set-points for the at least one auxiliary energy source based on the determined disturbance information
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 12, 2022
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Tobias Gybel Hovgaard, Poul Brandt Christensen
  • Patent number: 11293401
    Abstract: A method for wind turbine tower damping is disclosed, as well as an associated controller and wind turbine. The method comprises generating, using at least a first sensor signal, a first pitch reference signal for one or more rotor blades of a wind turbine during partial load operation. The method further comprises determining, using at least a second sensor signal, dynamic state information for a tower of the wind turbine. The method further comprises generating a second pitch reference signal by adapting the first pitch reference signal using the dynamic state information. The method further comprises selecting a maximum pitch reference signal from the second pitch reference signal and a saturation pitch reference signal. The method further comprises communicating the maximum pitch reference signal to control a pitch of the one or more rotor blades.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: April 5, 2022
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Fabio Caponetti, Jesper Sandberg Thomsen
  • Patent number: 11296638
    Abstract: A motor/generator/transmission system includes: an axle; a stator ring having a plurality of stator coils disposed around the periphery of the stator ring, wherein each phase of the plurality of stator coils includes a respective set of multiple parallel non-twisted wires separated at the center tap with electronic switches for connecting the parallel non-twisted wires of each phase of the stator coils all in series, all in parallel, or in a combination of series and parallel; a rotor support structure coupled to the axle; a first rotor ring and a second rotor ring each having an axis of rotation coincident with the axis of rotation of the axle, at least one of the first rotor ring or the second rotor ring being slidably coupled to the rotor support structure and configured to translate along the rotor support structure in a first axial direction or in a second axial direction.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: April 5, 2022
    Assignee: FALCON POWER, LLC
    Inventors: Harley C. McDonald, James L. Bailey, Matthew C. McDonald