Patents Examined by Thomas M. Dougherty
  • Patent number: 10734923
    Abstract: A vibration wave motor includes a vibrator including a piezoelectric element; a friction member with which the vibrator comes into contact by receiving pressurizing force; and a guide member that holds the vibrator. The guide member includes an input portion on one end portion, the input portion receiving force from outside, and a pressurizing portion on another end portion positioned on an opposite side of the one end portion, the pressurizing portion providing the pressurizing force to the vibrator. A guide portion extending in a direction of relative movement of the vibrator and the friction member is formed between the input portion and the pressurizing portion.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: August 4, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventor: Harushige Yamamoto
  • Patent number: 10727764
    Abstract: A piezoelectric generator is specified, comprising a deformation body, which spans a projection surface and is embodied with a setpoint pressure surface situated opposite the projection surface, wherein the projection surface can be converted from a smaller projection surface when not loaded under pressure into a larger projection surface when pressure is applied to the setpoint pressure surface substantially perpendicular to the projection surface, and a spring effect is provided which counteracts an application of pressure to the setpoint pressure surface, wherein an electromechanical transducer element comprising a piezoelectric material wholly or partly spans the projection surface, such that the transducer element is embodied in an expandable fashion upon pressure being applied to the deformation body, and electrical microenergy can be generated by means of the piezoelectric material.
    Type: Grant
    Filed: February 13, 2016
    Date of Patent: July 28, 2020
    Inventors: Enrico Bischur, Norbert Schwesinger, Sandy Zaehringer
  • Patent number: 10727394
    Abstract: A system that may be used for energy harvesting includes a flexible beam secured between a first support and a second support. The supports are spaced apart at a distance less than a length of the flexible beam such that the beam is buckled. Responsive to external vibrations the flexible beam switches between a first position and a second position. A magnetic proof mass is coupled to the flexible beam at the beam's midpoint. At least one permanent magnet is positioned proximate to the magnetic proof mass and has the same polarity. The permanent magnet is positioned to expose the magnetic proof mass to a repulsive force when the magnetic proof mass is located at both the first position and the second position. Piezoelectric transducers are located above and below the first and second positions of the flexible beam to harvest energy.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: July 28, 2020
    Assignee: United States of America as represented by Secretary of the Navy
    Inventors: Adi R. Bulsara, Bruno Ando, Salvatore Baglio, Vincenzo Marletta, Antonio Pistorio
  • Patent number: 10722918
    Abstract: Methods, systems, computer-readable media, and apparatuses for high density Micro-Electro-Mechanical Systems (MEMS) are presented. In some embodiments, a method for manufacturing a micro-electro-mechanical device on a substrate can comprise etching a release via through a layer of the device. The method can further comprise creating a cavity in the layer of the device using the release via as a conduit to access the desired location of the cavity, the cavity enabling movement of a transducer of the device. The method can then comprise depositing low impedance, electrically conductive material into the release via to form an electrically conductive path through the layer. Finally, the method can comprise electrically coupling the electrically conductive material to an electrode of the transducer.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: July 28, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Donald William Kidwell, Jr., Ravindra Shenoy, Jon Lasiter
  • Patent number: 10727803
    Abstract: A piezoelectric vibration member that includes a substrate having a main surface on or in which a piezoelectric vibration member is mounted, a lid having a recess that is open so as to face the main surface and which includes a flange portion that projects outward from an opening edge of the recess, and a bonding layer that bonds the substrate and the lid together so as to hermetically seal the piezoelectric vibrator in a space between the recess and the main surface. The surface roughness of a side surface of the flange portion is greater than the surface roughness of the surface of the recess, and the bonding layer extends from the main surface of the substrate to the side surface of the flange portion.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: July 28, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Kazuyuki Noto
  • Patent number: 10716542
    Abstract: Ultrasound transducer assemblies and associated systems and method are disclosed herein. In one embodiment, an ultrasound transducer assembly includes at least one matching layer overlies a transducer layer. A plurality of kerfs extends at least into the matching layer. In some aspects, the kerfs are at least partially filled with a filler material that includes microballoons and/or microspheres.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: July 21, 2020
    Assignee: FUJIFILM SONOSITE, INC.
    Inventors: Wei Li, Gregg Frey, Simon Hsu
  • Patent number: 10720901
    Abstract: A bulk acoustic wave resonator includes: a support part disposed on a substrate; a layer disposed on the support part, wherein an air cavity is formed between the support part, the substrate and the layer; and a frame extending along the layer, within the air cavity, and spaced apart from the support part.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: July 21, 2020
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Tae Yoon Kim, Tae Kyung Lee, Sung Min Cho, Sang Kee Yoon, Moon Chul Lee
  • Patent number: 10714673
    Abstract: A transducer (140) having a mechanical impedance over an operative frequency range and having a desired power coupling (145) to a load over the operative frequency range comprises a piezoelectric device (141) having a frequency distribution of modes in the operative frequency range; and an overmould (143). The overmould (143) is arranged to surround at least part of the piezoelectric device (141); and the parameters of the overmould (143) are selected to provide a required impedance matching between the mechanical impedance of the transducer (140) and the mechanical impedance of the load. An alternative transducer comprises a mounting means for holding a discrete portion of at least a part of the periphery of the piezoelectric device wherein the parameters of the mounting means are selected to provide a required boundary condition for the periphery of the piezoelectric device whereby the desired power coupling between the transducer and the load is provided.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: July 14, 2020
    Assignee: Google LLC
    Inventors: James East, Neil John Harris
  • Patent number: 10712879
    Abstract: Aspects disclosed in the detailed description include a touch capacitance transduced energy harvesting system. The energy harvesting system includes a touch sensing electrode array and energy harvesting circuitry coupled to the touch sensing electrode array. When a movable conductive object (e.g., a human finger) moves toward or away from the touch sensing electrode array, capacitance of the touch sensing electrode array increases and decreases accordingly, thus transducing a direct current (DC) current in the touch sensing electrode array. As such, the energy harvesting circuitry can be configured to harvest electric energy from the DC current to generate and store a DC voltage. By harvesting the electric energy transduced from the kinetic energy of the movable conductive object, it is possible to power a low-power electronic device (e.g., a biosensor) with motions already used for interfacing with the low-power electronic device.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: July 14, 2020
    Assignee: The Regents of the University of California
    Inventors: Alyssa Zhou, Michel Maharbiz
  • Patent number: 10715058
    Abstract: A piezoelectric device includes an insulating substrate, a piezoelectric vibration device that is mounted on a device mounting pad, a metal lid member that seals the piezoelectric vibration device in an airtight manner, an external pad that is arranged outside the insulating substrate, an oscillation circuit, a temperature compensation circuit, and a temperature sensor. The lid member and the temperature sensor or the lid member and the IC component are connected to each other so as to be heat-transferable, and a heat transfer member having thermal conductivity higher than that of the material of the insulating substrate is additionally included.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: July 14, 2020
    Assignee: Seiko Epson Corporation
    Inventor: Kyo Horie
  • Patent number: 10715100
    Abstract: An acoustic wave filter device includes a substrate, a filter disposed on the substrate, a wall member disposed on the substrate and surrounding the filter, and a cap member disposed above the wall member and, with the wall member, forming an internal space. The cap member has a curved shape and comprises a first cap member comprising a first material and a second cap member comprising a second material.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: July 14, 2020
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Seong Hun Na, Jae Hyun Jung, Seung Wook Park
  • Patent number: 10707832
    Abstract: A piezoelectric element body has a first principal surface and a second principal surface. A pair of first electrodes is disposed on the first principal surface. The vibrating body includes a metal plate, an insulating layer, and a pair of second electrodes. The metal plate has a third principal surface and a fourth principal surface. The insulating layer is disposed on the third principal surface. The pair of second electrodes is disposed on the insulating layer. The piezoelectric element and the vibrating body are disposed in such a manner that the first principal surface and the third principal surface oppose each other via the insulating layer. The pair of second electrodes physically contacts the respective first electrodes. The second electrodes are exposed from the piezoelectric element and are separated from all of edges of the insulating layer, when viewed from a direction orthogonal to the third principal surface.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: July 7, 2020
    Assignee: TDK CORPORATION
    Inventors: Kaoru Kijima, Kazushi Tachimoto, Tatsuya Taki
  • Patent number: 10702889
    Abstract: The ultrasonic tubular transducer is activated at the centre thereof by two symmetrical electromechanical converters. The vibration generated by the two electromechanical converters is converted and then transmitted to the tube via a coupler. The ultrasonic transducer can be vibrationally isolated from the interfaces thereof by caps equally suitable for connecting the transducer to a stationary frame, a free end or another similar ultrasonic transducer. A device for pre-stressing electromechanical converters has a hole bored at the centre thereof in order to allow cables from the transducer as well as from adjacent transducers to pass therethrough.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: July 7, 2020
    Assignee: CEDRAT TECHNOLOGIES
    Inventors: Timothée Forissier, Nabil Bencheikh, Frank Claeyssen, Alexandre Pages
  • Patent number: 10707831
    Abstract: A resonator includes a support frame, a rectangular vibrating plate that performs contour vibration in a predetermined direction, and two pairs of support arms. The vibrating plate includes four vibration regions arranged in a row in the lengthwise direction and electrodes disposed in the vibration regions. Each of the vibration regions vibrate with a phase opposite to phases with which the adjacent vibration regions vibrate upon excitation. A center line of a pair of the electrodes in the lengthwise direction is offset from a center line, in the lengthwise direction, of a corresponding vibration region that includes the electrode disposed thereon.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: July 7, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Toshio Nishimura, Yuichi Goto, Daisuke Nakamura
  • Patent number: 10707407
    Abstract: An ultrasonic device includes a substrate having a first opening, a second opening and a wall part partitioning the first opening and the second opening; a first vibration film and a second vibration film which close the first opening and the second opening respectively; a first piezoelectric element and a second piezoelectric element which are formed on surfaces of the first vibration film and the second vibration film opposite to the substrate; an acoustic matching layer which is disposed within the first opening and the second opening so as to come into contact with the first vibration film and the second vibration film.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: July 7, 2020
    Assignee: Seiko Epson Corporation
    Inventor: Kanechika Kiyose
  • Patent number: 10707405
    Abstract: This invention relates to an electromechanical actuator comprising a support and a deformable element comprising a portion anchored to at least one anchoring zone of the support and mobile portion, the deformable element comprising an electro-active layer, a reference electrode arranged on a first face of the electro-active layer an actuating electrode arranged on a second face, opposite the first face, of the electro-active layer comprises a capacitive device for measuring the deformation of the deformable element, said device being at least partially formed by a capacitive stack comprising a measuring electrode on the second face of the electro-active layer, a measuring portion of the reference electrode located facing the measuring electrode, and a portion of the electro-active layer inserted between the measuring electrode.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: July 7, 2020
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Julie Abergel, Jean-Sebastien Danel, Emmanuel Defay, Gwenael Le Rhun
  • Patent number: 10700262
    Abstract: A piezoelectric resonator includes a piezoelectric thin film including a functional conductor, a fixing layer provided on a principal surface of the piezoelectric thin film to define a void that overlaps a functional portion region, and a support substrate on a principal surface of the fixing layer. A sacrificial layer is provided on a principal surface of a piezoelectric substrate and the fixing layer is provided on the principal surface of the piezoelectric substrate to cover the sacrificial layer. The support substrate is attached to a surface of the fixing layer and the piezoelectric thin film is peeled from the piezoelectric substrate. The functional conductor is provided on the piezoelectric thin film, a through hole is provided in the piezoelectric thin film to straddle a boundary between the fixing layer and the sacrificial layer, and the sacrificial layer is removed by wet etching using the through hole to form the void.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: June 30, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Yutaka Kishimoto
  • Patent number: 10700619
    Abstract: A piezoelectric actuator includes a plurality of piezoelectric elements that generate a driving force to be transmitted to a driven portion; and a power supply portion that supplies power to the plurality of piezoelectric elements. The plurality of piezoelectric elements are electrically connected to the power supply portion in parallel.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: June 30, 2020
    Assignee: Seiko Epson Corporation
    Inventors: Kiichi Kajino, Osamu Miyazawa
  • Patent number: 10700663
    Abstract: A resonator may include a first dielectric member, a second dielectric member, and a composite member. The first dielectric member may have a first cavity. The composite member may include a piezoelectric layer and may overlap at least one of the first dielectric member and the second dielectric member. At least one of the second dielectric member and the composite member may have a second cavity. The piezoelectric layer may be positioned between the first cavity and the second cavity. A projection of the first cavity in a direction perpendicular to a flat side of the first dielectric member and a projection of the second cavity in the direction may intersect each other to form a polygon. No two edges of the polygon may be parallel to each other.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: June 30, 2020
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, NINGBO SEMICONDUCTOTR INTERNATIONAL CORPORATION
    Inventors: Herb He Huang, Clifford Ian Drowley, Jiguang Zhu, Haiting Li
  • Patent number: 10700620
    Abstract: A vibration wave motor includes a vibrator including a piezoelectric element; a friction member with which the vibrator comes into contact by receiving pressurizing force; and a guide member that holds the vibrator. The guide member includes an input portion on one end portion, the input portion receiving force from outside, and a pressurizing portion on another end portion positioned on an opposite side of the one end portion, the pressurizing portion providing the pressurizing force to the vibrator. A guide portion extending in a direction of relative movement of the vibrator and the friction member is formed between the input portion and the pressurizing portion.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: June 30, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventor: Harushige Yamamoto