Patents Examined by Thomas Magee
-
Patent number: 6844229Abstract: A method of manufacturing a semiconductor device having a storage electrode of a capacitor is provided. The method includes the steps of: forming a contact hole perforating through an interlayer dielectric layer on a semiconductor substrate; forming a conductive plug to fill the contact hole and expose the surface of the interlayer dielectric layer; forming molds on the interlayer dielectric layer to expose the surface of the conductive plug; recessing the upper surface of the conductive plug to expose a portion of the sidewalls of the interlayer dielectric layer; forming an electrode layer to cover the recessed conductive plug, and the sidewalls of the interlayer dielectric layer and the molds; and removing upper surfaces of the electrode layer to make a storage electrode until molds are exposed.Type: GrantFiled: October 31, 2001Date of Patent: January 18, 2005Assignee: Samsung Electronics Co., Ltd.Inventors: Moon-hee Lee, Woo-gwan Shim, Hyung-ho Ko, Jong-ho Chung
-
Patent number: 6838747Abstract: A dopant is ion-implanted into a second region (52) of a polycrystalline silicon film (50) for a resistive element (5). Nitrogen or the like is ion-implanted into a second region (62) of a polycrystalline silicon film (60) for a resistive element (6). The density of crystal defects in the second regions (52, 62) is higher than that in first regions (51, 61). The density of crystal defects in a polycrystalline silicon film (70) for a resistive element (7) is higher near a silicide film (73). A polycrystalline silicon film (80) for a resistive element (8) is in contact with a substrate (2) with a silicide film in an opening of an isolation insulating film (3). The density of crystal defects in a substrate surface (2S) near the silicide film is higher than that in the vicinity. With such a structure, a current leak in an isolation region can be reduced.Type: GrantFiled: July 11, 2002Date of Patent: January 4, 2005Assignee: Renesas Technology Corp.Inventor: Hidekazu Oda
-
Patent number: 6825115Abstract: Dopant deactivation, particularly at the Si/silicide interface, is avoided by forming deep source/drain implants after forming silicide layers on the substrate and activating the source/drain regions by laser thermal annealing. Embodiments include forming source/drain extensions, forming metal silicide layers on the substrate surface and gate electrode, forming preamorphized regions under the metal silicide layers in the substrate, ion implanting to form deep source/drain implants overlapping the preamorphized regions and extending deeper into the substrate then the preamorphized regions, and laser thermal annealing to activate the deep source/drain regions.Type: GrantFiled: January 14, 2003Date of Patent: November 30, 2004Assignee: Advanced Micro Devices, Inc.Inventors: Qi Xiang, Robert B. Ogle, Eric N. Paton, Cyrus E. Tabery, Bin Yu
-
Patent number: 6821812Abstract: A process and structure for mounting a small sample in an opening in a larger substrate by using an intermediate size structure, wherein the small sample is mounted in a small opening in the intermediate size structure which then, in turn, is mounted in an intermediate size opening in the large substrate. As a result, the formation of gaps around the edge of the sample may be voided. The process is carried out by first mounting the test sample in a opening formed with tapered sidewalls through a die with the upper surface of the sample directly abutting the edges of the smallest portion of the tapered opening in the die, The die is then mounted in an opening with tapered sidewalls in a test wafer. The opening in the die is sized to equal, at the smallest end of the tapered sidewalls of the opening, the width and length of the square sample.Type: GrantFiled: December 13, 2002Date of Patent: November 23, 2004Assignee: KLA-Tencor Technologies CorporationInventors: Marco Tortonese, Dimitar Ovtcharov, René Maurice Blanquies
-
Patent number: 6815757Abstract: Disclosed are devices and associated methods for manufacturing an EEPROM memory cell (10) for use on a negatively biased substrate (12). The invention may be practiced using standard semiconductor processing techniques. Devices and methods are disclosed for a floating gate transistor for use as an EEPROM cell (10) including a DNwell (14) formed on a P-type substrate (12) for isolating the EEPROM cell (10) from the underlying P-type substrate (12).Type: GrantFiled: January 22, 2003Date of Patent: November 9, 2004Assignee: Texas Instruments IncorporatedInventors: Reed W. Adams, William E. Grose, Sameer Pendharkar, Roland Bucksch
-
Patent number: 6815750Abstract: A field effect transistor (FET) has a channel formed in a pore extending up from a conductive portion of a substrate through a stack of planar layers including a first insulating layer, a gate layer, and a second insulating layer. The pore can be upright or inclined relative to the layers. A nanoparticle used for a mask of a directional etching process ultimately defines the size of the pore and therefore the channel width. The substrate or a doped region of the substrate formed immediately beneath the channel can be a source/drain of the FET with the other drain/source being a doped region adjacent the top of the channel. The gate layer can form the gate or can contact a separate gate inside the pore.Type: GrantFiled: May 22, 2002Date of Patent: November 9, 2004Assignee: Hewlett-Packard Development Company, L.P.Inventor: Theodore I. Kamins
-
Patent number: 6815794Abstract: Semiconductor devices with a multiple isolation structure and methods for fabricating the same are provided. In one aspect, a semiconductor device comprises a heavily doped buried layer having a first conductivity type, which is formed in a predetermined region of a semiconductor substrate, and an epitaxial layer having the first conductivity type, which covers an entire surface of the semiconductor substrate. A device isolation structure is disposed such that the device isolation structure penetrates the epitaxial layer and a portion of the semiconductor substrate to define a device region. The device isolation structure includes an upper isolation structure penetrating an epitaxial layer as well as a lower isolation structure formed in the semiconductor substrate under the upper isolation structure.Type: GrantFiled: February 25, 2003Date of Patent: November 9, 2004Assignee: Samsung Electronics Co., Ltd.Inventors: Hwa-Sook Shin, Kwang-Dong Yoo
-
Patent number: 6808995Abstract: A transistor device that includes at least two transistors, each transistor including a source region, a drain region, and a shallow trench isolation formed between and contiguous with the source and drain regions, wherein the shallow trench isolation electrically isolates the source and drain regions to minimize the short-channel effects, a conductor layer disposed over the source region, shallow trench isolation, and drain region, wherein the conductor layer electrically connects the source and drain regions to serve as a channel region, a gate oxide disposed over the conductor layer, and a gate structure formed over the gate oxide.Type: GrantFiled: February 11, 2003Date of Patent: October 26, 2004Assignee: Macronix International Co., Ltd.Inventors: Hung-Sui Lin, Han Chao Lai, Tao Cheng Lu
-
Patent number: 6784065Abstract: A low-power bipolar transistor is formed to have an intrinsic emitter region with a sub-lithographic width, and an oxide layer that is self aligned to an overlying extrinsic emitter. The small extrinsic emitter region reduces the maximum current that can flow through the transistor, while the self-aligned oxide layer and extrinsic emitter reduces the base-to-emitter junction size and device performance variability across the wafer.Type: GrantFiled: June 15, 2001Date of Patent: August 31, 2004Assignee: National Semiconductor CorporationInventor: Abdalla Aly Naem
-
Patent number: 6781153Abstract: A TFT (20) for controlling the power supplied to an element to be driven (50), such as an organic EL element which operates based on the supplied power, is provided between the element to be driven (50) and a power supply line VL. The TFT (20) and the element to be driven (50) are electrically connected to by a wiring layer (40). The contact position between the wiring layer (40) and the TFT (20) and the contact position between the wiring layer (40) and the element to be driven (50) are positioned so as to be distant from each other. Alternatively, at least the contact hole region of a first electrode (52) of the element (50) is covered by a flattening layer. With this structure, it is possible to realize a flatter surface on which to form, for example, the emissive layer of the element to be driven.Type: GrantFiled: September 28, 2001Date of Patent: August 24, 2004Assignee: Sanyo Electric Co., Inc.Inventor: Katsuya Anzai
-
Patent number: 6781154Abstract: An object of the invention is to provide a semiconductor apparatus which simplifies a structure and reduces a possibility of occurrence of manufacture defect. Two of a first TFT and a second TFT which adjoins each other in a first direction are integrated in one semiconductor piece and share a source region electrically connected to a signal line and are formed in a symmetric shape in relation to a reference plane. Two scanning lines which extend in a second direction perpendicular to the first direction and are electrically connected to channel regions of the first and second TFTs and auxiliary capacitor electrodes for forming auxiliary capacitor between the auxiliary capacitor electrodes and drain electrodes electrically connected to the first and second TFTs are symmetrically arranged in relation to the reference plane.Type: GrantFiled: March 12, 2003Date of Patent: August 24, 2004Assignee: Sharp Kabushiki KaishaInventor: Masahito Gotoh
-
Patent number: 6777781Abstract: The operating temperature range for a vertical PNP transistor can be extended by applying cancellation techniques. The vertical PNP generates a first leakage current from the base-collector region. Another vertical PNP transistor is configured to generate a second leakage current, which is coupled to a current-mirror circuit. The output of the current-mirror circuit is configured to provide a cancellation effect on the first leakage current. The current-mirror circuit and vertical PNP may be configured such that the first leakage current is cancelled in a judicious amount, whereby the effects of leakage current and flare-out in the vertical PNP transistor are minimized or cancelled. The cancellation technique is applicable to temperature sensor circuits, thermal voltage generators, and bandgap circuits.Type: GrantFiled: April 14, 2003Date of Patent: August 17, 2004Assignee: National Semiconductor CorporationInventor: Perry Scott Lorenz
-
Patent number: 6759267Abstract: A method of programming a first memory cell in an array of at least four memory cells in a semiconductor device, each memory cell including a polysilicon gate, first and second spaced-apart diffused regions, a silicide layer provided over the polysilicon gate, an oxide spacer provided contiguous with a vertical sidewall of the polysilicon gate, and a layer of phase change material provided over at least a portion of the silicide layer, contiguous with the oxide spacer, and over the first diffused region.Type: GrantFiled: July 19, 2002Date of Patent: July 6, 2004Assignee: Macronix International Co., Ltd.Inventor: Hsu-Shun Chen
-
Patent number: 6756656Abstract: Inducting devices having a patterned ground shield with ribbing in an integrated circuit. In one embodiment, an inducting device comprises conductive turns to conduct current, a shield layer and a plurality of ribs. The shield layer is formed a select distance from the conductive turns. The shield layer is patterned into sections of shield to prevent eddy currents. The plurality of ribs are formed from a conductive layer that is positioned between the conductive turns and shield layer. Each rib is electrically coupled to a single associated section of shield. Moreover, each rib is more conductive than its associated section of shield to provide a less resistive current path than its associated section of shield.Type: GrantFiled: July 11, 2002Date of Patent: June 29, 2004Assignee: GlobespanVirata IncorporatedInventor: Rex Everett Lowther
-
Patent number: 6746970Abstract: A passivation layer is deposited onto the surface of a substrate followed by deposition of a polymer layer, through the application of a plasma enhanced chemical vapor deposition process, in which the substrate is placed on a chuck within a reaction chamber and fluorocarbon gas is introduced into the reaction chamber under the influence of at least one plasma source. The fluorocarbon gas can be a CFX gas. The at least one plasma source can include a first plasma source that ionizes the fluorocarbon gas by applying RF plasma energy, and a second plasma source that applies a near-zero self-bias to the substrate at an RF frequency during deposition of the passivation layer and a greater bias during deposition of the polymer layer. The passivation layer is deposited prior to the polymer layer to protect the surface of the substrate from damage during the deposition of the polymer layer.Type: GrantFiled: June 24, 2002Date of Patent: June 8, 2004Assignee: Macronix International Co., Ltd.Inventors: Ming-Chung Liang, Chung Tai Chen, Hsin-Yi Tsai
-
Patent number: 6737323Abstract: A trench structure that is substantially filled with high-conductivity material such as refractory metal particularly suitable for fast switching trench MOSFET applications. The trench is first lined by a dielectric material such as silicon dioxide. A layer of polysilicon is then formed on the dielectric material and provides buffering for stress relief. The trench is then filled substantially with refractory metal such as tungsten.Type: GrantFiled: June 11, 2001Date of Patent: May 18, 2004Assignee: Fairchild Semiconductor CorporationInventor: Brian S. Mo
-
Patent number: 6734494Abstract: A vertical field effect transistor includes an N.sup.+semiconductor substrate and an N.sup.−epitaxial layer deposited thereon and having lower dopant concentration than the semiconductor substrate, and is configured to have a plurality of unit cell transistors formed in the N.sup.−epitaxial layer and arranged in the epitaxial layer in longitudinal and lateral directions. The unit cell transistor includes a trench formed to have a depth X.sub.a and a width W, and further a gate electrode 25 formed within the trench and interposing a gate insulating film that has a thickness T.sub.OX and formed between the gate electrode and the surface of the trench. Moreover, the unit cell transistor includes a P-type base region having a depth X.sub.b, a source region, a heavily doped P-type base region formed in a central portion of the cell transistor and having a depth X.sub.Type: GrantFiled: May 27, 2003Date of Patent: May 11, 2004Assignee: NEC Electronics CorporationInventor: Kinya Ohtani
-
Patent number: 6727158Abstract: Structure and method for filling an opening in a semiconductor structure that is less susceptible to the formation of voids. A first layer of a first material is formed over the layer in which the opening is to be formed, and a faceted opening is formed in the first layer. The opening in the underlying layer is subsequently formed, and the material that is to fill the opening is deposited over the faceted opening and into the opening of the underlying layer.Type: GrantFiled: November 8, 2001Date of Patent: April 27, 2004Assignee: Micron Technology, Inc.Inventors: Dirk J. Sundt, William A. Polinsky, Mark A. Bossler, Gabriel G. Videla, Chris L. Inman
-
Patent number: 6724060Abstract: An N-type impurity diffusion region is formed in an element forming region surrounded by a field insulating film. In a region between an end portion of the N-type impurity diffusion region and an end portion of the field oxide film, a P-type impurity diffusion region is formed so as to contain an interface level present portion under a bird's beak portion. Thus, a PN junction is formed in a position distant from the interface level present portion. Therefore, even if a voltage is applied to the PN junction, a depletion layer will not reach the interface level present portion. Consequently, a semiconductor device, which suppresses an occurrence of a leakage current along the lower surface of an element isolation insulating film caused by the interface level present portion undesirably included in the depletion layer, as well as a manufacturing method of the same can be obtained.Type: GrantFiled: October 24, 2002Date of Patent: April 20, 2004Assignee: Renesas Technology Corp.Inventor: Atsushi Maeda
-
Patent number: 6724021Abstract: A semiconductor device, such as a power MOSFET, Schottky rectifier or p-n rectifier, has a voltage-sustaining zone (20) between a first (21, 23, 31a) and second (22) device regions adjacent to respective first and second opposite surfaces (11, 12) of a semiconductor body 10. Trenched field-shaping regions (40) including a resistive path (42) extend through the voltage-sustaining zone (20) to the underlying second region (22), so as to enhance the breakdown voltage of the device. The voltage-sustaining zone (20) and the trenched field-shaping regions (40) are present in both the active device area (A) and in the peripheral area (P) of the device. A further resistive path (53) extends across the first surface (11), outwardly over the peripheral area (P). This further resistive path (53) provides a potential divider that is connected to the respective resistive paths (42) of successive underlying trenched field-shaping regions (40) in the peripheral area (P).Type: GrantFiled: February 5, 2002Date of Patent: April 20, 2004Assignee: Koninklijke Philips Electronics N.V.Inventors: Rob Van Dalen, Christelle Rochefort, Godefridus A. M. Hurkx