Patents Examined by Tima McGuthry-Banks
  • Patent number: 6264725
    Abstract: According to a process for producing pig iron (10) from fine-particulate iron oxide carriers and lumpy iron-containing material in a meltdown gasifying zone (9) of a melter gasifier (3), the iron-containing material is melted in a bed (13) formed of solid carbon carriers, under the supply of carbon-containing material and oxygen-containing gas while simultaneously forming a reducing gas. Fine-particulate iron-oxide carriers, such as iron-containing fine ore and ore dust and oxidic iron fine dust, are introduced into a reducing gas stream leaving the melter gasifier (3), and the reducing gas is separated from the fine-particulate material formed thereby. The separated fine-particulate material is introduced into the meltdown gasifying zone (9) via a dust recirculation line (26, 27, 28, 29) and through a dust burner (30), and the reducing gas is used for reducing iron-oxide-containing material.
    Type: Grant
    Filed: April 7, 1999
    Date of Patent: July 24, 2001
    Assignee: Voest-Alpine Industrieanlagenbau GmbH
    Inventors: Josef Stockinger, Michael Nagl
  • Patent number: 6264717
    Abstract: An article that comprises a fine-grain, homogeneous microstructure is essentially oxide- and sulfide-free and segregation defect free. The article is produced by a process that comprises forming a source of clean refined metal that has oxides and sulfides refined out by electroslag refining; and forming the article by nucleated casting. The invention also sets forth the article made by a system for implementing the clean metal nucleated casting process.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: July 24, 2001
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Jr., Mark Gilbert Benz, Robert John Zabala, Bruce Alan Knudsen, Samuel Vinod Thamboo
  • Patent number: 6264722
    Abstract: In a process for producing molten pig iron or steel preproducts from fine-particulate iron containing material in a meltdown gasifying zone of a melter gasifier, under the supply of carbon-containing material and oxygen-containing gas at the simultaneous formation of a reducing gas in a bed formed of solid carbon carriers, the iron-containing material is melted when passing the bed.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: July 24, 2001
    Assignees: Voest-Alpine, Pohang Iron & Steel Co. Ltd.
    Inventors: Werner Leopold Kepplinger, Felix Wallner, Johannes Schenk
  • Patent number: 6264884
    Abstract: A refining hearth. The refining hearth comprises an open vessel defining a first deep zone having a predetermined depth, a second deep zone having a predetermined depth, and a shallow zone intermediate the first deep zone and the second deep zone, wherein the shallow zone has a predetermined depth less that of the first deep zone and less than that of the second deep zone. A furnace for refining metal is also disclosed which employs a similarly constructed hearth. A method of refining metal is also disclosed. The method includes depositing molten metal in a first deep pool, passing the molten metal through a shallow pool having a depth less than the depth of the first deep pool, directing an energy source at the molten metal, and passing the molten metal into a second deep pool having a depth greater than the depth of the shallow pool.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: July 24, 2001
    Assignee: ATI Properties, Inc.
    Inventors: Ingo A. Grosse, Leonard C. Hainz, II
  • Patent number: 6264723
    Abstract: A method and a plant for manufacturing steel in an electric steel furnace wherein the electric steel furnace is charged with at most 70% scrap and with at most 60% liquid pig iron obtained in a mini-blast furnace, and optionally with additional iron carriers, and wherein the mini-blast furnace is operated for producing the pig iron with iron pellets and/or coarse or lump ore and coke as well as coal. The melting process in the electric steel furnace is operated using electrical energy and by simultaneously using oxygen and injected coal. The plant for carrying out the method is composed of a mini-blast furnace and an electric steel furnace.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: July 24, 2001
    Assignee: SMS Schloemann-Siemag Aktiengesellschaft
    Inventor: Fritz-Peter Pleschiutschnigg
  • Patent number: 6261341
    Abstract: A method for inhibiting crud formation and organic in aqueous solvent and aqueous in organic solvent entrainment in the solvent extraction of copper from an aqueous sulfuric acid pregnant leach solution is disclosed. The method comprises adding an antifoam formulation stable at a solution pH of about 1 to 2 is added. A preferred antifoam formulation comprises a glycol ester and an alkyl phenol ethoxylate in a paraffinic oil solvent added to the acid solution.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: July 17, 2001
    Assignees: BetzDearborn Inc., Corporacion Nacional del Cobre de Chile
    Inventors: Ricardo Arancibia Cifuentes, Donald C. Roe, Jorge Vergara Chavez, Andres Reghezza Inzunza
  • Patent number: 6251163
    Abstract: The process of the present invention recovers precious metals from refractory carbonaceous precious metal ores by floating a portion of the ground ore, blending the concentrate with an unfloated portion of the ore, autogenously autoclaving the blended material, cooling the oxidized slurry by dilution, leaching the oxidized slurry after dilution in the presence of a thiosulfate lixiviant, and recovering the precious metal by suitable techniques.
    Type: Grant
    Filed: March 4, 1998
    Date of Patent: June 26, 2001
    Assignee: Placer Dome, Inc.
    Inventor: James A. King
  • Patent number: 6251156
    Abstract: This invention relates to a method for operation of a rotary hearth furnace in conjunction with an electric melter for production of high purity iron product having a range of silicon and manganese, with low sulfur and phosphorus content. The method includes producing high purity iron product and a range of carbon content product from iron oxide and carbon bearing compacts, including the steps of providing a furnace for direct reduction of iron oxide and carbon bearing compacts, pre-reducing iron and carbon bearing compacts in a furnace having a rotary hearth surface, producing intermediate carbon-containing metallized iron. An electric melter furnace is utilized for receiving intermediate carbon-containing metallized iron from the pre-reducing step, which is fed directly and continuously into a central interior area of the electric melter, with heating of the carbon-containing metallized iron in the electric melter under elevated temperatures of about 1300° C. to about 1700° C.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: June 26, 2001
    Assignee: Midrex Technologies, Inc.
    Inventors: Glenn E. Hoffman, Ronald D. Gray
  • Patent number: 6245123
    Abstract: The process for melting oxidic slags and combustion residues having a minimum content of metallized portions such as, e.g., iron and/or carbon carriers, of 3% by weight is carried out in a shaft furnace directly heated by means of fossil fuels via burners. The molten slag bath is transferred into a hearth type furnace immediately adjoining the shaft furnace and in which metals such as, for instance, copper are separated by sedimentation under thermal dissociation and discharged separately via a bottom outlet. The completely oxidized slag reaches a consecutively arranged slag treating reactor via a separate discharge.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: June 12, 2001
    Assignee: “Holderbank” Financiere Glarus AG
    Inventor: Alfred Edlinger
  • Patent number: 6245124
    Abstract: A vertical shaft furnace for melting scrap metal, particularly copper scrap, uses one or more burners operated superstoichiometrically in order to provide excess oxygen to react with a waste gas stream passing up through the copper scrap thereby reducing the amount of carbon dioxide and visual contaminants in the waste gas stream.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: June 12, 2001
    Assignee: The BOC Group plc
    Inventor: Robert Franks
  • Patent number: 6245285
    Abstract: A lance (5) for injecting a feed material, preferably a solid feed material, into a metallurgical vessel, is disclosed. The lance comprises: an inlet (21) for introducing the feed material into the lance; an outlet (23) at a forward end of the lance (5) for discharging the feed material from the lance (5); a hollow elongate member (25) that defines a passageway (33) for the feed material between the inlet (21) and the outlet (23) and is adapted to be cooled by a first cooling fluid; and an outer jacket (35) positioned around a section of the length of the member (25) and is adapted to be cooled by a second cooling fluid.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: June 12, 2001
    Assignee: Technological Resources Pty. Ltd.
    Inventors: Rodney J. Dry, Cecil Peter Bates, Ralph M. Weber
  • Patent number: 6241806
    Abstract: A continuous process for recovering vanadium values from petroleum coke is disclosed. A vanadium containing coke is charged to a molten metal bath to which oxygen containing gas is added in an amount sufficient to heat balance the process and produce off gas. The carbon in the coke dissolves in the molten metal bath as does the vanadium content of the coke. A majority, and preferably all, of the net addition of vanadium to the process is removed in the form of “dust” from the molten metal bath.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: June 5, 2001
    Assignee: Marathon Ashland Petroleum, LLC
    Inventors: Donald P. Malone, Thomas C. Holcombe
  • Patent number: 6241807
    Abstract: A system for recovery of metals from solutions containing dissolved metals. The system includes an apparatus and method for placing supercritical carbon dioxide that contains an extractant in contact with the solution and agitating the two resulting phases. Once the metals are extracted by the extractant, they can be removed from the carbon dioxide phase by depressurization or by reduction by exposure to hydrogen. The extractant preferably comprises a metal binding group, a spacer group and a C02-philic group.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: June 5, 2001
    Assignee: University of Pittsburgh
    Inventors: Robert M. Enick, Eric Beckman
  • Patent number: 6241800
    Abstract: A method of recovering contaminating or valuable components from a solid feed material (10), includes feeding the material (10) into an optional grinder as a pretreatment (12), then into a heated melter (14) along with a material (16) that provides fluorine, to provide a molten or semi-molten material, where the molten material is then reacted with water or an acid solution (22) in vessel (20), to form a dissolved molten or semi-molten salt in solution, which can be passed to extractor (26) or the like and provide a concentrated stream of the valuable or contaminating components (30).
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: June 5, 2001
    Assignee: Westinghouse Electric Company LLC
    Inventors: Edward J. Lahoda, Khoa T. Ha
  • Patent number: 6238453
    Abstract: A process for producing stainless steels, particularly special steels containing chromium and chromium-nickel, in a smelting arrangement having at least two vessels, for supplying a steel foundry. A charge having mostly iron-containing raw scrap materials and partially carbon-containing alloy carriers is melted in a first vessel. At a temperature of 1460° C., the melt is decarburized by the injection of oxygen so as to reduce the carbon content to less than 0.3%. The melt is heated to a tapping temperature of between 1620° C. to 1720° C. and the carbon content is subsequently reduced to 0.1%. A second charge is melted in a second vessel simultaneously with the decarburizing of the first charge in the first vessel.
    Type: Grant
    Filed: July 31, 1998
    Date of Patent: May 29, 2001
    Assignee: Mannesmann AG
    Inventors: Lutz Rose, Hartmut Vorwerk, Horst Kappes, Klaus Ulrich
  • Patent number: 6238452
    Abstract: A method for making steel in an electric furnace, wherein a predetermined amount of liquid melt is fed into the electric furnace. The method comprises the steps of (a) continuously feeding a controlled flow of liquid melt into the furnace without interrupting the heating from the electric arc, (b) continuously injecting a refining gas into the furnace before the C and/or Si content of the metal bath reaches a predetermined value, until the end of the feeding process, and (c) pursuing the injection of refining gas after the predetermined amount of melt has been fed into the furnace, until the target value for the C and/or Si content of the metal bath has been reached.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: May 29, 2001
    Assignee: Paul Wurth, S.A.
    Inventors: André Kremer, Guy Denier, Jean-Luc Roth
  • Patent number: 6235081
    Abstract: A method for producing a sponge metal from metal ore or iron ore which comprises reacting said metal ore or iron ore in a reduction zone with a CO— and H2-containing, reducing feed gas source which has been compressed, and after said reaction, withdrawing the remaining feed gas as an export gas from the reduction zone, wherein the CO— and H2-containing feed gas is introduced into the reduction zone form at least to gas sources, whereby upon a breakdown of one of the feed gas sources, at least a portion of the export gas recovered from the reduction zone is compressed, subjected to CO2 elimination recycled to the reduction zone together with the reducing feed gas.
    Type: Grant
    Filed: August 19, 1998
    Date of Patent: May 22, 2001
    Assignee: Voest-Alpine Industrieanlagenbau GmbH
    Inventor: Johannes Wurm
  • Patent number: 6235082
    Abstract: With a method for producing liquid metal from charging substances containing ore and of fluxes, the ore is directly reduced to sponge metal in at least one reduction zone (5, 7, 8), the sponge metal is melted along with fluxes in a melt-down gasifying zone (11) under the supply of carbon carriers and an oxygen-containing gas. A CO- and H2-containing process gas serving as a reducing gas is produced, fed into the reduction zone (5, 7, 8), reacted there, and subsequently withdrawn, wherein slagforming fluxes, in particular calcium carbonate, dolomite etc., gas are calcined by the process gas in a calcining zone (26′) that is separate from the reduction zone (5, 7, 8) and melt-down zone (11). To be able to employ slagforming fluxes of any desired grain and without disturbances of the reduction process, the calcining zone (26′) is connected in parallel to the reduction zone (5, 7, 8) with respect to the material flow and the calcined fluxes are fed into the melter gasifier (10) directly.
    Type: Grant
    Filed: May 24, 1998
    Date of Patent: May 22, 2001
    Assignees: Voest-Alpine Industrieanlagenbau GmbH, Pohang Iron & Steel Co., Ltd., Research Institute of Industrial Science & Technology
    Inventors: Werner Leopold Kepplinger, Johann Wurm, Johannes-Leopold Schenk
  • Patent number: 6235235
    Abstract: An apparatus and system for its use for a continuous production on an alkali metal, preferably sodium metal, by a reduction of the metal hydroxide with methane or natural gas as a reductant.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: May 22, 2001
    Inventor: Jed H. Checketts
  • Patent number: 6231808
    Abstract: A tough and heat resisting aluminum alloy comprising aluminum, a transition metal element and a rare earth element, and having a modulated structure which comprises an aluminum matrix and an intermetallic compound precipitated to form a network in the aluminum matrix. Also disclosed in a process for producing the aluminum alloy which comprises the steps of: rapid quenching and solidifying a liquid aluminum alloy at a quenching rate of 102 to 105 K/sec to obtain an aluminum-based supersaturated solid solution; and heat treating the quenched aluminum-based supersaturated solid solution at a heat treating temperature of 473 K or higher, the temperature increasing rate to the heat treating temperature being 1.5 K/sec or higher.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: May 15, 2001
    Assignees: Sumitomo Electric Industries, Ltd., Japan Science and Technology Corporation
    Inventors: Manabu Hashikura, Hisao Hattori, Toshihiko Kaji, Yoshishige Takano