Patents Examined by Timon Wanga
  • Patent number: 9341923
    Abstract: A composite plastic member includes a first stacked body comprised of a plurality of chromium layers stacked on a plastic substrate; and a second stacked body comprised of a plurality of chromium nitride layers stacked on the first stacked body. Each of the first and second stacked bodies is formed such that a lower-hardness layer having a lower hardness than upper and lower layers which contact with and sandwich the lower-hardness layer therebetween and a higher-hardness layer having a higher hardness than upper and lower layers which contact with and sandwich the higher-hardness layer therebetween are alternately stacked in a stacking direction; and a thickness of a higher-hardness chromium nitride layer is not more than 40% of a thickness of a lower-hardness chromium nitride layer in the second stacked body. The composite plastic member has high wear resistance and satisfactory sliding performance, and the conductivity and excellent outer appearance.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: May 17, 2016
    Assignee: NIKON CORPORATION
    Inventors: Yusuke Taki, Yohei Takahashi, Yujiro Urakawa
  • Patent number: 9322094
    Abstract: The present invention provides a film forming apparatus configured such that the occurrence of contamination is reduced between targets. The film forming apparatus includes: a plurality of target electrodes respectively having attachment surfaces to which targets can be attached; a substrate holder for holding a substrate at a position opposing the plurality of target electrodes; a first shutter member rotatably provided between the plurality of target electrodes and the substrate holder and having a plurality of openings that can oppose the attachment surfaces; and a shield member disposed adjacent to the first shutter member and having a number of openings equal to the number of the target electrodes, wherein a gap between the first shutter member and the shield member widens toward an outer perimeter from a portion where adjacent target electrodes are closest.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: April 26, 2016
    Assignee: CANON ANELVA CORPORATION
    Inventors: Yuji Kajihara, Yasushi Yasumatsu, Kazuya Konaga
  • Patent number: 9312413
    Abstract: A colored substrate and a method for producing a substrate having a colored interference filter layer containing a polycrystalline metal oxide or polycrystalline metal oxides with the aid of physical or chemical vapor deposition using a coating system, in particular with the aid of a sputtering gas, in which at least two, in particular at least six, coating layers are vapor deposited one on top of the other forming polycrystalline metal oxides in each case.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: April 12, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Frank Hergert, Volker Probst, Jan Rudolf Thyen
  • Patent number: 9303312
    Abstract: A deposition system includes a magnetron sputter deposition source that includes a backing frame that includes a window and a closed loop around the window. The backing frame includes inside surfaces towards the window, one or more sputtering targets mounted on inside surfaces of the backing frame, and one or more magnets mounted on outside surfaces of the backing frame. The one or more sputtering targets include sputtering surfaces that define internal walls of the window. The one or more magnets can produce a magnetic field near the one or more sputtering surfaces. A substrate includes a deposition surface oriented towards the window in the backing frame. The deposition surface receives sputtering material(s) from the one or more sputtering targets.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: April 5, 2016
    Assignee: Areesys Technologies, Inc.
    Inventors: Kai-An Wang, Craig W. Marion, Efrain A. Velazquez, Michael Z. Wong, Albert Ting, Jingru Sun
  • Patent number: 9260779
    Abstract: An object is to provide a transparent conductive film having favorable transparency and conductivity at low cost. Another object is to reduce the resistivity of a transparent conductive film formed using conductive oxynitride including zinc and aluminum. Another object is to provide a transparent conductive film that is formed using conductive oxynitride including zinc and aluminum. When aluminum and nitrogen are made to be included in a transparent conductive film formed using oxide including zinc to form a transparent conductive film that is formed using conductive oxynitride including zinc and aluminum, the transparent conductive film can have reduced resistivity. Heat treatment after the formation of the transparent conductive film that is formed using conductive oxynitride including zinc and aluminum enables reduction in resistivity of the transparent conductive film.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: February 16, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Tetsunori Maruyama, Takayuki Saito, Yuki Imoto, Noriaki Uto, Yuta Endo, Hitomi Shionoya, Takuya Hirohashi, Shunpei Yamazaki
  • Patent number: 9249503
    Abstract: The film formation method comprises the steps of: unrolling and feeding an elongated substrate wound in a roll form from a first roll chamber in a first direction from the first roll chamber toward a second roll chamber, using a first surface as a surface for film formation; degassing the substrate fed in the first direction; forming a second material film on the first surface of the substrate in a second film formation chamber; taking up the substrate in a roll form in the second roll chamber, the substrate having the second material film formed thereon; unrolling and feeding the substrate from the second roll chamber in a second direction from the second roll chamber toward the first roll chamber; forming a first material film on the second material film in a first film formation chamber; taking up the substrate in a roll form in the first roll chamber.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 2, 2016
    Assignee: NITTO DENKO CORPORATION
    Inventors: Tomotake Nashiki, Yoshimasa Sakata, Hideo Sugawara, Kenkichi Yagura, Akira Hamada, Yoshihisa Ito, Kuniaki Ishibashi
  • Patent number: 9252002
    Abstract: Shutter disk assemblies for use in process chambers to protect a substrate support disposed below the shutter disk assembly from undesired material deposition are provided herein. In some embodiments, a shutter disk assembly for use in a process chamber to protect a substrate support disposed below the shutter disk assembly may include an upper disk member having a top surface and a bottom surface; and a lower carrier member having at least a portion of the lower carrier member disposed below a portion of the upper disk member to support the upper disk member and to create a protective overlap region that prevents exposure of the substrate support upon deformation of the upper disk member.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: February 2, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Cheng-Hsiung Matthew Tsai, Ananthkrishna Jupudi, Robert Dinsmore, Song-Moon Suh
  • Patent number: 9243320
    Abstract: The film formation method comprises the steps of: unrolling and feeding an elongated substrate wound in a roll form from a first roll chamber in a first direction from the first roll chamber toward a second roll chamber; degassing the fed substrate; forming a first material film on a first surface in a first film formation chamber; guiding the substrate having the first material film formed thereon to a second film formation chamber in a second direction from the second roll chamber toward the first roll chamber; forming, in the second film formation chamber, a second material film on a second surface opposite the first surface of the substrate when it is being guided in the second direction; taking up, in a third roll chamber provided between the first roll chamber and the second roll chamber, the substrate in a roll state.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: January 26, 2016
    Assignee: NITTO DENKO CORPORATION
    Inventors: Tomotake Nashiki, Yoshimasa Sakata, Hideo Sugawara, Kenkichi Yagura, Akira Hamada, Yoshihisa Ito, Kuniaki Ishibashi
  • Patent number: 9246461
    Abstract: A method for manufacturing a piezoelectric thin film including an aluminum nitride thin film containing scandium on a substrate, the method includes: sputtering step for sputtering aluminum and scandium under an atmosphere containing at least a nitrogen gas. In the sputtering step in the method according to the present invention, a scandium content rate falls within the range from 0.5% by atom to 50% by atom when a temperature of the substrate falls within the range from 5° C. to 450° C. during the sputtering step.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 26, 2016
    Assignees: DENSO CORPORATION, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Morito Akiyama, Kazuhiko Kano, Akihiko Teshigahara
  • Patent number: 9217197
    Abstract: Methods for depositing layers on substrates are provided herein. In some embodiments, a method of forming a layer on a substrate having at least one feature disposed therein includes forming a conformal layer on an upper surface of the substrate and within the at least one feature by sputtering a target material using a first plasma that reduces the surface energy of the target material such that the sputtered target material wets the upper surface of the substrate and the at least one feature to form the conformal layer; and filling at least a portion of the at least one feature by sputtering the target material using a second plasma different from the first plasma to increase the surface energy of the sputtered target material and the conformal layer such that at least portions of the conformal layer are pulled into the at least one feature by capillary action.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: December 22, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Jick M. Yu
  • Patent number: 9206503
    Abstract: The present invention relates to a sputtering method using a sputtering device, wherein entire scan region is defined from one side to the other side of a sputtering target, and the sputtering target is scanned with a magnet moving back and forth along the entire scan region multiple times. The entire scan region of a sputtering target is divided by N parts to be uniformly eroded, such that a magnet moves back and forth along some part of the divided entire scan region. A sputtering method using a sputtering device can therefore extend an alternating cycle of a sputtering target, by virtue of improving utilization efficiency of the sputtering target through uniform erosion of the sputtering target, and can also reduce manufacturing cost.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: December 8, 2015
    Assignee: Hydis Technologies Co., Ltd.
    Inventor: Jai Chun Lee
  • Patent number: 9206505
    Abstract: A method of continuously subjecting an elongated substrate to vacuum film formation is disclosed. The method comprises the steps of: feeding a first substrate from a first roll chamber in a first direction from the first chamber toward a second roll chamber; degassing the first substrate; forming a film of a second material on the first substrate, in a second film formation chamber; and rolling up the first substrate in the second roll chamber, thereby producing the first substrate, and further comprises similar steps to produce a second substrate. In advance of producing the first substrate with the second material film, the first cathode electrode of the first film formation chamber is removed from the first film formation chamber, and, in advance of producing the second substrate with the first material film, the second cathode electrode of the second film formation chamber is removed from the second film formation chamber.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: December 8, 2015
    Assignee: NITTO DENKO CORPORATION
    Inventors: Tomotake Nashiki, Hideo Sugawara, Tomonori Noguchi, Akira Hamada, Yoshihisa Ito, Kuniaki Ishibashi
  • Patent number: 9199874
    Abstract: A method of obtaining a substrate coated on a first face with at least one transparent and electrically conductive thin layer based on at least one oxide, including depositing the at least one thin layer on the substrate and subjecting the at least one thin layer to a heat treatment in which the at least one layer is irradiated with aid of radiation having a wavelength between 500 and 2000 nm and focused on a zone of the at least one layer, at least one dimension of which does not exceed 10 cm. The radiation is delivered by at least one radiation device facing the at least one layer, a relative displacement being created between the radiation device and the substrate to treat the desired surface, the heat treatment being such that resistivity of the at least one layer is reduced during the treatment.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: December 1, 2015
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Emmanuelle Peter, Andriy Kharchenko, Nicolas Nadaud
  • Patent number: 9193624
    Abstract: The present invention relates to a production method for thermochromatic glass in which use is made of a low-temperature metal vapor deposition process, and to thermochromatic glass obtained thereby. More specifically, the invention relates to: a production method for thermochromatic glass in which a low-temperature metal-vapor-deposition process is used in order to effect the vapor deposition of a metal for forming a thermochromatic metal oxide and then subsequently a heat treatment is carried out, such that the processing efficiency is high and the reliability of the thermochromatic characteristics of the glass produced by the method is outstanding; and to thermochromatic glass obtained by means of the method.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: November 24, 2015
    Assignee: LG HAUSYS, LTD.
    Inventor: Youn Ki Jun
  • Patent number: 9175379
    Abstract: In an embodiment of the present invention, the following operations are performed while a substrate holder is being rotated at a fixed rotation speed with plasma being generated. Specifically, a first state where a substrate holding surface of the substrate holder is exposed to a target holder is formed to start a first deposition of divisional depositions, and a second state where the surface is shut off from the target holder is formed in T/X seconds after the start of the first divisional deposition. Moreover, the first state is formed to start an n-th deposition of the divisional depositions when a reference point set on the substrate holder arrived at a position rotated by (n?1)×360/X degrees from a position of the reference point located at the start of the targeted deposition, and the second state is formed in T/X seconds after the start of the n-th divisional deposition.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: November 3, 2015
    Assignee: Canon Anelva Corporation
    Inventors: Yoshinori Nagamine, Hiroshi Tsunematsu
  • Patent number: 9165587
    Abstract: A system is provided for etching patterned media disks. A movable electrode is utilized to perform sputter etch. The electrode moves to near or at slight contact to the substrate so as to couple RF energy to the disk. The material to be etched may be metal, e.g., Co/Pt/Cr or similar metals. The substrate is held vertically in a carrier and both sides are etched serially. That is, one side is etched in one chamber and then in the next chamber the second side is etched. An isolation valve is disposed between the two chambers and the disk carrier moves the disks between the chambers. The carrier may be a linear drive carrier, using, e.g., magnetized wheels and linear motors.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: October 20, 2015
    Assignee: INTEVAC, INC.
    Inventors: Michael S. Barnes, Terry Bluck
  • Patent number: 9156089
    Abstract: Process for producing a target by thermal spraying, especially by plasma spraying, said target comprising at least one compound chosen from refractory metals, resistive oxides and volatile oxides, characterized in that at least one fraction of said compound in the form of a powder composition of said compound is sprayed by thermal spraying, onto at least one surface portion of the target, in a controlled atmosphere and in that powerful cryogenic cooling jets directed onto the target during its construction are used.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: October 13, 2015
    Assignee: SAINT-GOBAIN COATING SOLUTIONS
    Inventor: Dominique Billieres
  • Patent number: 9147558
    Abstract: Shutter disks for use in process chambers are provided herein. In some embodiments, a shutter disk for use in a process chamber may include a body having an outer perimeter, a top surface of the body, wherein the top surface includes a central portion having a substantially horizontal planar surface, and at least one angled structure disposed radially outward of the central portion, each of the at least one angled structure having a top portion and an angled surface disposed at a downward angle in a radially outward direction from the top portion toward the outer perimeter, and a bottom surface of the body.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: September 29, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bonnie T. Chia, Song-Moon Suh, Cheng-Hsiung Matthew Tsai, Robert Dinsmore, Glen T. Mori
  • Patent number: 9139900
    Abstract: The present invention provides an indium target and manufacturing method thereof, where deposition rate is high, initial discharge voltage is low, and deposition rate and discharge voltage, from the start of sputtering to the end of sputtering, are stable. In the indium target, an aspect ratio (length of longer direction/length of shorter direction) of crystal particle, observed from cross-section direction of the target, is 2.0 or less.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 22, 2015
    Assignee: JX Nippon Mining Metals Corporation
    Inventors: Yousuke Endo, Masaru Sakamoto
  • Patent number: 9136086
    Abstract: A process for modifying a surface of a substrate is provided that includes supplying electrons to an electrically isolated anode electrode of a closed drift ion source. The anode electrode has an anode electrode charge bias that is positive while other components of the closed drift ion source are electrically grounded or support an electrical float voltage. The electrons encounter a closed drift magnetic field that induces ion formation. Anode contamination is prevented by switching the electrode charge bias to negative in the presence of a gas, a plasma is generated proximal to the anode electrode to clean deposited contaminants from the anode electrode. The electrode charge bias is then returned to positive in the presence of a repeat electron source to induce repeat ion formation to again modify the surface of the substrate. An apparatus for modification of a surface of a substrate by this process is provided.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: September 15, 2015
    Assignee: GENERAL PLASMA, INC.
    Inventor: John E. Madocks