Patents Examined by Timon Wanga
  • Patent number: 9583304
    Abstract: A processing apparatus for processing a substrate in a vacuum processing space in a chamber includes a shield arranged in the chamber, and a holding portion configured to hold the shield by a magnetic force. The holding portion has a holding surface on which a first magnet is arranged. The shield includes a second magnet configured to generate an attraction force with respect to the first magnet, and a receiving portion configured to receive a tool configured to move the shield with respect to the holding portion.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: February 28, 2017
    Assignee: CANON ANELVA CORPORATION
    Inventor: Yasushi Yasumatsu
  • Patent number: 9580796
    Abstract: One or more embodiments of the invention are directed to deposition apparatuses comprising a grounded top wall, a processing chamber and a plasma source assembly having a conductive hollow cylinder and substantially continuous grounded shield substantially conforming to the shape of the hollow cylinder.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 28, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Alan Ritchie, Michael S. Cox
  • Patent number: 9556509
    Abstract: A method, comprising: generating a vapor of a material from a source of said material comprising a plurality of separate solid pieces of said material supported on a surface of a base in a configuration in which said plurality of solid pieces of said target material are arranged at two or more levels to cover the whole of said surface of said base while providing a gap between adjacent pieces at the same level; and depositing said material from said vapor onto a substrate.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 31, 2017
    Assignee: FLEXENABLE LIMITED
    Inventors: Ricardo Mikalo, Jens Dienelt
  • Patent number: 9551065
    Abstract: Film-formation rate can be increased in the pre-sputtering and in the subsequent sputtering onto a substrate or the like, and sputtering failures such as splashes can be inhibited, by making an Al-based alloy or Cu-based alloy spurting target fulfill the following requirements (1) and/or (2) when the total area ratio of crystal orientations <001>±15°, <011>±15°, <111>±15°, <112>±15°, and <012>±15° in the sputtering surface normal direction in the depth within 1 mm from the uppermost surface of the sputtering target is referred to as a P value: (1) the area ratio PA of <011>±15° to the P value: 40% or lower; and (2) the total area ratio PB of <001>±15° and <111>±15° to the P value: 20% or higher.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: January 24, 2017
    Assignees: Kobe Steel, Ltd., KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Katsushi Matsumoto, Junichi Nakai, Toshiaki Takagi
  • Patent number: 9536715
    Abstract: The present invention relates to a method for recycling a tantalum coil for sputtering that is disposed between a substrate and a sputtering target. The method for recycling a tantalum coil for sputtering is characterized in that the whole or partial surface of a spent tantalum coil is subject to cutting (cutting is performed until a re-deposited film and knurling traces are eliminated) so as to eliminate the re-deposited film that was formed during sputtering, and knurling is newly performed to the cut portion. While sputtered grains are accumulated (re-deposited) on the surface of the tantalum coil disposed between the substrate and the sputtering target during sputtering, by eliminating the sputtered grains accumulated on the spent coil by way of cutting after the sputtering is complete, the tantalum coil can be efficiently recycled. Thus, provided is technology capable of lean manufacturing of new coils, improving productivity, and stably providing such coils.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 3, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Shiro Tsukamoto
  • Patent number: 9508532
    Abstract: A magnetron plasma apparatus boosted by hollow cathode plasma includes at least one electrically connected pair of a first hollow cathode plate and a second hollow cathode plate placed opposite to each other at a separation distance of at least 0.1 mm and having an opening following an outer edge of a sputter erosion zone on a magnetron target so that a magnetron magnetic field forms a perpendicular magnetic component inside a hollow cathode slit between plates and, wherein the plates and are connected to a first electric power generator together with the magnetron target to generate a magnetically enhanced hollow cathode plasma in at least one of a first working gas distributed in the hollow cathode slit and a second working gas admitted outside the slit in contact with a magnetron plasma generated in at least one of the first working gas and the second working gas.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: November 29, 2016
    Assignee: BB PLASMA DESIGN AB
    Inventors: Ladislav Bardos, Hana Barankova
  • Patent number: 9499902
    Abstract: A plastic substrate has a porous layer on a surface. The porous layer is formed at least partially from a material of the plastic substrate and has pores. The proportion by volume of pores is greater in a first region of the porous layer than in a second region of the porous layer. The second region follows the first region, as seen proceeding from the plastic substrate. The porous layer can be produced by a plasma process that simultaneously effects structuring of the plastic substrate by ion bombardment and coating of the plastic substrate.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: November 22, 2016
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Ulrike Schulz, Peter Munzert, Matthias Fahland, Waldemar Schoenberger
  • Patent number: 9502223
    Abstract: A sputtering apparatus includes a backing plate, a fixing portion, and a shield surrounding the periphery of a target and having an opening. The fixing portion fixes the target to the backing plate by pressing the peripheral portion of the target against the backing plate. The shield includes a facing portion facing the backing plate without the fixing portion intervening between them, and an outer portion formed outside the facing portion. The gap between the facing portion and the backing plate is smaller than the gap between the outer portion and the backing plate. The inner surface of the shield, which faces a processing space, includes a portion which inclines such that the distance between the inner surface and the backing plate decreases from the outer portion to the facing portion.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: November 22, 2016
    Assignee: CANON ANELVA CORPORATION
    Inventor: Shigenori Ishihara
  • Patent number: 9493879
    Abstract: Methods of patterning conductive layer with a mask are described. The methods include low-ion-mass sputtering of the conductive layer by accelerating (e.g. helium or hydrogen containing ions) toward a substrate which includes the patterned mask and the underlying conductive layer. The sputtering processes described herein selectively remove conductive layers while retaining mask material.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: November 15, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Mark Hoinkis, Hiroyuki Miyazoe, Eric Joseph
  • Patent number: 9476118
    Abstract: An adjustable shunt assembly for use with a sputtering magnetron having at least two magnets spaced from one another and disposed with respect to a sputtering target having a sputtering surface. The magnets define a longitudinal axis and the adjustable shunt assembly moves a shunt between the two magnets for altering the magnetic field therebetween. A transporter is used for moving the shunt so that such movement may be occurred without disassembling the components of the magnetron and such movement may also be done remotely. A method for moving such shunts is also disclosed.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: October 25, 2016
    Assignee: Angstrom Sciences, Inc.
    Inventor: Richard Newcomb
  • Patent number: 9478388
    Abstract: A method of processing one or more surfaces is provided, comprising: providing a switchable ion gun which is switchable between a cluster mode setting for producing an ion beam substantially comprising ionized gas clusters for irradiating a surface and an atomic mode setting for producing an ion beam substantially comprising ionized gas atoms for irradiating a surface; and selectively operating the ion gun in the cluster mode by mass selecting ionized gas clusters using a variable mass selector thereby irradiating a surface substantially with ionized gas clusters or the atomic mode by mass selecting ionized gas atoms using a variable mass selector thereby irradiating a surface substantially with ionized gas atoms.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: October 25, 2016
    Assignee: VG SYSTEMS LIMITED
    Inventor: Bryan Barnard
  • Patent number: 9476117
    Abstract: A method of sputter coating a glass substrate includes providing a glass substrate and providing a sputtering assembly for sputtering a coating onto the glass substrate in a vacuum deposition chamber. The sputtering assembly includes a backing plate and a separating element disposed on the backing plate. At least one target element is provided and disposed at and in contact with a surface of the separating element. The target element is not bonded the separating element when disposed at and in contact with the surface of the separating element. An expansion gap is provided at or adjacent to the target element to allow for expansion of the target element during the sputtering process. Material from the target element is sputtered and the target element is heated to a substantially elevated temperature during the sputtering process. The sputtering process coats a surface of the glass substrate with the target element material.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: October 25, 2016
    Assignee: Magna Mirrors of America, Inc.
    Inventors: Ian A. McCabe, Jeffrey D. Harlow
  • Patent number: 9469897
    Abstract: A thin film forming apparatus includes a substrate holding portion and a target portion. The target portion has a plurality of targets arranged at predetermined intervals and parallel to a substrate held by the substrate holding portion. The substrate holding portion is configured to move the substrate parallel to the target portion. A shield portion configured to block sputtered particles flying from the target portion is placed on the target portion side of the substrate so as to face a gap between adjoining ones of the targets.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: October 18, 2016
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Yoshimasa Chikama, Iwao Suzuki
  • Patent number: 9416438
    Abstract: The invention pertains to a method for the production of coatings by physical vapor deposition (PVD), wherein a binary target or a target with more than two constituents is evaporated in a curvilinear cathodic arc discharge, causing the ions with different masses (elements) to be splitted and the ion splitting results in variations for the ratio of the different masses (elements) at different positions in the deposition chamber.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: August 16, 2016
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFAFFIKON
    Inventors: Jürgen Ramm, Beno Wídrìg, Helmut Rudígìer
  • Patent number: 9410240
    Abstract: The invention relates to a process for producing multi-layer bodies which carry at least one metal layer. The invention further relates to multi-layer products having at least three layers, comprising a substrate layer made of a substrate and containing special copolycarbonates, a metal layer and at least one additional layer.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: August 9, 2016
    Assignee: BAYER INTELLECTUAL PROPERTY GMBH
    Inventors: Rafael Oser, Alexander Meyer
  • Patent number: 9404175
    Abstract: A system that incorporates teachings of the subject disclosure may include, for example, a method in which a selection is made for a first major constituent, a second major constituent and a minor constituent for forming a desired material. The method can include mixing the first major constituent, the second major constituent and the minor constituent in a single mixing step to provide a mixture of constituents. The method can include drying the mixture of constituents to provide a dried mixture of constituents and calcining the dried mixture of constituents to provide a calcinated mixture of constituents. The method can include processing the calcinated mixture of constituents to provide a powder of constituents. Other embodiments are disclosed.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: August 2, 2016
    Assignee: BlackBerry Limited
    Inventors: Marina Zelner, Andrew Vladimir Claude Cervin
  • Patent number: 9404174
    Abstract: In some embodiments, substrate processing apparatus may include a chamber body; a lid disposed atop the chamber body; a target assembly coupled to the lid, the target assembly including a target of material to be deposited on a substrate; an annular dark space shield having an inner wall disposed about an outer edge of the target; a seal ring disposed adjacent to an outer edge of the dark space shield; and a support member coupled to the lid proximate an outer end of the support member and extending radially inward such that the support member supports the seal ring and the annular dark space shield, wherein the support member provides sufficient compression when coupled to the lid such that a seal is formed between the support member and the seal ring and the seal ring and the target assembly.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 2, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Donny Young, Alan A. Ritchie
  • Patent number: 9388490
    Abstract: An apparatus for coating a substrate is provided that includes a racetrack-shaped plasma source having two straight portions and at least one terminal turnaround portion connecting said straight portions. A tubular target formed of a target material that forms a component of the coating has an end. The target is in proximity to the plasma source for sputtering of the target material. The target is secured to a tubular backing cathode, with both being rotatable about a central axis. A set of magnets are arranged inside the cathode to move an erosion zone aligned with the terminal turnaround toward the end of the target as the target is utilized to deposit the coating on the substrate. Target utilization of up to 87 weight percent the initial target weight is achieved.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: July 12, 2016
    Assignee: General Plasma, Inc.
    Inventors: John E. Madocks, Patrick Lawrence Morse, Phong Ngo
  • Patent number: 9359669
    Abstract: A method of forming targets for cathodic arc deposition of alloy bond coats for turbine engines components consists of melting a base alloy containing aluminum and other metals, adding grain boundary strengthening alloy additions, and casting the melt to form a cylindrical billet that is subsequently sectioned into puck shaped targets. The grain boundary strengthening additions minimize intergranular fracture of the targets during high current operation of the arc coating process.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: June 7, 2016
    Assignee: United Technologies Corporation
    Inventors: Reade R. Clemens, Neil B. Ridgeway
  • Patent number: 9347127
    Abstract: An ion etch assisted deposition apparatus deposits a thin film upon a substrate having a three dimensional feature, using an ion etching source and deposition source arranged at similar angles relative to the substrate and at an angle ? relative to each other. The angle ? is selected to be substantially equal the supplement of the angle ?? formed between the three dimensional feature on the substrate and the substrate surface. In this configuration the relative flux of energetic etch ions and deposition atoms is adjusted to prevent the growth of poor quality deposited material.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: May 24, 2016
    Assignee: Veeco Instruments, Inc.
    Inventors: Boris L. Druz, Vincent Ip, Adrian Devasahavam