Patents Examined by Timothy A. Brainard
  • Patent number: 11789115
    Abstract: A radar cloaking apparatus configured for positioning on a radar target and corresponding methods are provided. The radar cloaking apparatus comprises a radio signal emitter and computational circuitry. The computational circuitry is configured to cause the radar cloaking apparatus to at least reference a model encoding scattering properties of the radar target; determine a predicted reflection signature of the radar target from a selected interrogation angle based at least in part on the model encoding the scattering properties of the radar target; and cause transmission, by the radio signal emitter, of a cloaking radio signal along the selected interrogation angle. The cloaking radio signal is actively generated based on the predicted reflection signature of the radar target shifted in phase such that the cloaking radio signal is configured to destructively interfere with a reflected signal formed by an interrogating radar signal scattering off of the radar target.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: October 17, 2023
    Assignee: nou Systems, Inc.
    Inventors: Glen Patrick McClellan, Joshua Lee Wilson
  • Patent number: 11789135
    Abstract: A system and method is disclosed for determining a particular vehicle state based on a UWB signal received at a plurality of receiving nodes. A plurality of channel-impulse responses (CIRs) may be computed from the UWB signal received from the plurality of receiving nodes. A plurality of peak-based features based on a selected position and amplitude may be extracted from the plurality of CIRs. A plurality of correlation-based features may be generated by correlating the plurality of CIRs to a corpus of reference CIRs relating to a plurality of vehicle states. A plurality of maximum likelihood vehicle matrices may be generated by correlating the plurality of CIRs to the corpus of reference CIRs relating to the plurality of vehicle states. The vehicle state may then be determined by processing the plurality of peak-based features and correlation-based features using the machine learning classification algorithm.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: October 17, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Yunze Zeng, Avinash Kalyanaraman, Sushanta Mohan Rakshit, Vivek Jain
  • Patent number: 11789118
    Abstract: An already deployed phased array can be calibrated in the near field without the need for an anechoic chamber or complex positioning mechanisms. Calibration includes positioning a transmitting antenna in the near field in front of the receiving antennas and generating range profiles while the transmitting antenna is positioned at various locations. The range profiles are utilized to produce various defined vectors that are then used in calculations that output a coupling calibration matrix and two vectors that compensate for receiver channel length and gain differences. The coupling calibration matrix and the vectors are input into the processing unit of the phased array in order to calibrate the receiving channels relative to each other.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: October 17, 2023
    Assignee: NXP USA, Inc.
    Inventors: Filip Alexandru Rosu, Tudor Bogatu
  • Patent number: 11789142
    Abstract: A radar image processing device is provided for generating a radar image from a region of interest (ROI). The radar image processing device receives transmitted radar pulses and radar echoes reflected from the ROI at different positions along a path of a moving radar platform and stores computer-executable programs including a range compressor, a graph modeling generator, a signal aligner, a radar imaging generator and a focused image generator.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: October 17, 2023
    Assignee: MITSUBISHI ELECTRIC RESEARCH LABORATORIES INC.
    Inventors: Dehong Liu, Siheng Chen, Petros Boufounos
  • Patent number: 11789138
    Abstract: Methods and apparatus to implement compact time-frequency division multiplexing for MIMO radar are disclosed. An apparatus includes an antenna array controller to: transmit a first signal via a first transmitter of a radar antenna array, the first signal having a first duration and modulated across a first frequency range; and transmit a second signal via a second transmitter, the second signal having a second duration and modulated across a second frequency range, the first and second durations including an overlapping period of time, the first and second frequency ranges including an overlapping frequency range. The apparatus further includes a signal separation analyzer to: determine a first echo received at a receiver of the radar antenna array corresponds to the first signal; and determine a second echo received at the receiver corresponds to the second signal.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: October 17, 2023
    Assignee: INTEL CORPORATION
    Inventors: Chulong Chen, Saiveena Kesaraju, Moshe Teplitsky, Alon Cohen
  • Patent number: 11782154
    Abstract: Various embodiments described herein provide for a terrain-aided location determination using a range/angle radar altimetry. Range/angle radar systems use vertical synthetic aperture radar measurements which do not include any cross-track resolution, such that if a range/Doppler cloud from a single VSAR image is compared to a regular DEM, there can be ambiguity in determining the cross-track position. By modifying the DEM to inherently include additional terrain signature information that could be compared to VSAR measurement, the limitation can be overcome, and a single range/angle radar system can provide an accurate position without the additional complexity of a range/angle/angle radar system.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: October 10, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: George R. Sloan, Tucker Caelan Ellis Haydon
  • Patent number: 11782151
    Abstract: An electronic device may include a voltage standing wave ratio (VSWR) sensor disposed along a radio-frequency transmission line between a signal generator and an antenna. The VSWR sensor may gather VSWR measurements from radio-frequency signals transmitted by the signal generator over the transmission line. Control circuitry may identify a variation in the VSWR measurements over time and may compare the variation to a threshold value to determine whether an external object in the vicinity of the antenna is animate or inanimate. The control circuitry may reduce the maximum transmit power level of the antenna when the external object is animate and may maintain or increase the maximum transmit power level when the external object is inanimate. This may serve to maximize the wireless performance of the electronic device while also ensuring that the device complies with regulatory limits on radio-frequency energy exposure.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: October 10, 2023
    Assignee: Apple Inc.
    Inventors: Joonhoi Hur, Andreas Menkhoff, Bernhard Sogl, Jochen Schrattenecker, Rastislav Vazny
  • Patent number: 11782124
    Abstract: An electric or electronic device module comprises an electronic device, means for powering the electric or electronic device module, and at least one radar sensor having a detection range. The electric or electronic device module has a processor adapted for calibrating the at least one radar sensor by at least partly automatically defining and calculating parameters of boundaries of a predefined geometry, in which the at least one radar sensor has to measure, in order to prevent the at least one radar sensor from taking into account measurements outside that predefined geometry. The predefined geometry is located within the detection range of the at least one radar sensor and is equally sized to or smaller than that detection range of the at least one radar sensor.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: October 10, 2023
    Assignee: NIKO NV
    Inventors: Karel Van Haver, Diederik Devenyn
  • Patent number: 11782149
    Abstract: Embodiments are provided for managing the operation of sensors in an electronic device. According to certain aspects, the electronic device may detect a change in motion from an initial set of sensor data generated by a sensor(s). A memory cache may store the initial set of sensor data or additional sensor data generated by the sensor(s). The electronic device may initiate a supplemental algorithm that analyzes the cached data. Based on the analysis of the cached data and whether the change in motion is confirmed or whether additional motion is detected, the electronic device may manage the operation of the supplemental algorithm.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: October 10, 2023
    Assignee: Google LLC
    Inventors: Andrew Felch, Christopher Findeisen, JinJie Chen, Mark Alexander, Shang Shi, Zhuo Wang
  • Patent number: 11784416
    Abstract: An apparatus includes a first layer having an RF lossy material, a second layer having the RF lossy material, and a plurality of conductive or resistive pads arranged in a planar array between the first layer and the second layer. The apparatus may also include a plurality of thermal vias, where each thermal via may correspond to one of the pads, may extend through at least the first layer, and may be formed of a thermally-conductive material. Dimensions of each pad may be selected based on a desired resonant frequency band, and the desired resonant frequency band may be associated with RF energy transmitted by at least one RF source in proximity to the apparatus.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: October 10, 2023
    Assignee: Raytheon Company
    Inventors: Jeremy J. Holdstock, James E. Foreman, David R. Gorman, Darrell W. Miller
  • Patent number: 11774603
    Abstract: The present invention provides a system, method and apparatus for determining the status of coupled assets during transport. According to a first preferred embodiment, a method of the present invention preferably includes triggering a set of tracking devices to transmit time stamp data indicating when the tracked assets cross pre-set speed thresholds. The present invention preferably further includes comparing the received time stamp data to equivalent data points from other assets and identifying unique pairs of assets which crossed the same speed thresholds at similar times and positions (i.e. matching velocity profiles). The system then designates the unique pair of assets as coupled and may apply custom tracking rules and power saving algorithms to the coupled assets.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: October 3, 2023
    Assignee: ORBCOMM, INC.
    Inventors: Kenn Humborg, Patrick Cahill
  • Patent number: 11774553
    Abstract: In an embodiment, a method includes: transmitting a plurality of radar signals using a millimeter-wave radar sensor towards a target; receiving a plurality of reflected radar signals that correspond to the plurality of transmitted radar signals using the millimeter-wave radar; mixing a replica of the plurality of transmitted radar signals with the plurality of received reflected radar signals to generate an intermediate frequency signal; generating raw digital data based on the intermediate frequency signal using an analog-to-digital converter; processing the raw digital data using a constrained L dimensional convolutional layer of a neural network to generate intermediate digital data, where L is a positive integer greater than or equal to 2, and where the neural network includes a plurality of additional layers; and processing the intermediate digital data using the plurality of additional layers to generate information about the target.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: October 3, 2023
    Assignee: Infineon Technologies AG
    Inventors: Avik Santra, Thomas Reinhold Stadelmayer
  • Patent number: 11774576
    Abstract: The disclosure relates to determining a carrier phase shift between a first transceiver and a second transceiver, each transceiver comprising a local oscillator for generating a carrier signal, an example method for which comprises: the first transceiver generating and transmitting a first continuous wave carrier signal packet; the second transceiver receiving the first continuous wave carrier signal packet; the second transceiver calculating a first phase correction based on a comparison between the received first continuous wave carrier signal packet and a local oscillator carrier signal at the second transceiver; the second transceiver generating and transmitting a second continuous wave carrier signal packet; the first transceiver receiving the second continuous wave carrier signal packet; the first transceiver calculating a second phase correction based on a comparison between the received second continuous wave carrier signal packet and a local oscillator signal at the first transceiver; and the first t
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: October 3, 2023
    Assignee: NXP B.V.
    Inventor: Stefan Tertinek
  • Patent number: 11776368
    Abstract: A selective intrusion detection system includes a Doppler transceiver configured and adapted to receive Doppler return signals indicative of moving targets present in a surveillance space. A processor is operatively connected to the Doppler transceiver to convert Doppler return signals into spectrograms and to determine whether any given spectrogram is indicative of presence of a human or another moving target, like a domestic pet. An alarm is operatively connected to the processor, wherein the processor and alarm are configured to provide an alert in the event the processor determines any given spectrogram is indicative of a human, and to forego providing an alert in the event the processor determines any given spectrogram is indicative of another moving target only.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: October 3, 2023
    Assignee: UTC Fire & Security Americas Corporation, Inc.
    Inventors: Mathias Pantus, Jeroen Te Paske, Pascal Van De Mortel, Leon Mintjens, Sorin Costiner, Michael J. Giering, Robert Labarre, Mark Vogel, Vijaya Ramaraju Lakamraju
  • Patent number: 11774551
    Abstract: A method for compensating for noise in a secondary radar system is described. The method includes, using a first transceiver, transmitting, in temporally overlapping manner, a first transmission signal containing a first interfering component and a second transmission signal containing a second interfering component, and compensating for at least one of phase shifts or frequency shifts resulting from the first and second interfering components by evaluation of the first and second transmission signals.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: October 3, 2023
    Assignee: Symeo GmbH
    Inventors: Martin Vossiek, Peter Gulden, Michael Gottinger
  • Patent number: 11774583
    Abstract: Example embodiments relate to self-reflection filtering techniques within radar data. A computing device may use radar data to determine a first radar representation that conveys information about surfaces in a vehicle's environment. The computing device may use a predefined model to generate a second radar representation that assigns predicted self-reflection values to respective locations of the environment based on the information about the surfaces conveyed by the first radar representation. The predefined model can enable a predefined self-reflection value to be assigned to a first location based on information about a surface positioned at a second location and a relationship between the first location and the second location. The computing device may then modify the first radar representation based on the predicted self-reflection values in the second radar representation and provide instructions to a control system of the vehicle based on modifying the first radar representation.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: October 3, 2023
    Assignee: Waymo LLC
    Inventor: Nicholas Armstrong-Crews
  • Patent number: 11774574
    Abstract: A computer implemented method for determining an angle of a detection comprises the following steps carried out by computer hardware components: acquiring a range rate of the detection; determining a pair of candidate angles of the detection based on the range rate; acquiring a beamvector of the detection; determining a correlation between the beamvector and a reference vector; and determining the angle of the detection based on the pair of candidate angles and based on the correlation.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: October 3, 2023
    Assignee: Aptiv Technologies Limited
    Inventors: Uri Iurgel, Stephanie Lessmann, Markus Stefer
  • Patent number: 11777230
    Abstract: According to one embodiment, an antenna device comprises an antenna panel including a first transmission antenna, a first reception antenna, and a second reception antenna, and a rotation device configured to rotate the antenna panel. A first radio wave is irradiated from the first transmission antenna when a rotation angle of the antenna panel is a first angle and a reflected radio wave of the first radio wave is received by the first reception antenna and the second reception antenna. A second radio wave is irradiated from the first transmission antenna when the rotation angle is a second angle and a reflected radio wave of the second radio wave is received by the first reception antenna and the second reception antenna.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: October 3, 2023
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Xu Zhu, Hiroki Mori
  • Patent number: 11774592
    Abstract: A wireless multimode system includes: an array of N antenna elements that includes a first portion of M antenna elements and a second portion of L antenna elements; M transmission amplifiers configured to transmit, via the M antenna elements, frames of transmit data, where the frames of transmit data include transmit radar signals and transmit communication signals; M reception amplifiers configured to receive, via the M antenna elements, frames of receive data, where the frames of receive data includes receive communication signals; and L reception amplifiers configured to receive, via the L antenna elements, receive radar signals; and a resource scheduler configured to allocate bandwidth for transmit radar signals and transmit communication signals within the frames of transmit data based on one or more predetermined parameters.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: October 3, 2023
    Assignee: Infineon Technologies AG
    Inventors: Ivan Tsvelykh, Ashutosh Baheti, Avik Santra, Samo Vehovc
  • Patent number: 11774573
    Abstract: A system for determining a stationary state of a rail vehicle on a track includes a first radar mounted at an end of the rail vehicle and a second radar mounted at another end of the rail vehicle. A speed sensor is mounted on the rail vehicle. A series of fixed reflective track features are found along the track. A processing unit, communicably connected with the speed sensor, the first radar and the second radar receives data from the first radar and the second radar corresponding to the distance to the fixed reflective track features and determines the stationary state or low-speed condition of the rail vehicle and checks the state or condition by comparing it with an output of the speed sensor.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: October 3, 2023
    Assignee: THALES CANADA INC.
    Inventors: Adam Le, Tyler Daoust, David Beach, Alon Green