Patents Examined by Timothy A. Brainard
  • Patent number: 11650284
    Abstract: A radar sensor system and a method for operating a radar sensor system. The radar sensor system includes: at least one first sub-sensor system and a second sub-sensor system, each for generating sensor data, each sub-sensor system including an antenna array including at least one receiving antenna and at least one transmitting antenna; a control device, by which each sub-sensor system is independently transferrable from a normal operation into a silent operation; and a data fusion device, which is designed to fuse the sensor data exclusively of the sub-sensor systems during the normal operation with one another for generating output data.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: May 16, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Michael Schoor, Benedikt Loesch, Marcel Mayer
  • Patent number: 11644566
    Abstract: Embodiments are disclosed that for synthetic aperture radar (SAR) systems and methods that process radar image data to generate radar images using vector processor engines, such as single-instruction-multiple-data (SIMD) processor engines. The vector processor engines can be further augmented with accelerators that vectorize element selection thereby expediting memory accesses required for interpolation operations performed by the vector processor engines.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: May 9, 2023
    Assignee: NXP USA, Inc.
    Inventors: Ryan Haoyun Wu, Jayakrishnan Cheriyath Mundarath, Sili Lu, Maik Brett
  • Patent number: 11644565
    Abstract: This document describes techniques and components of a radar system with a sparse primary array and a dense auxiliary array. Even with fewer antenna elements than a traditional radar system, an example radar system has a comparable angular resolution at a lower cost, lower complexity level, and without aliasing. The radar system includes a processor and antenna arrays that can receive electromagnetic energy reflected by one or more objects. The antenna arrays include a primary subarray and an auxiliary subarray. The auxiliary subarray includes multiple antenna elements with a smaller spacing than the antenna elements of the primary subarray. The processor can determine, using the received electromagnetic energy, first and second potential angles associated with the one or more objects. The processor then associates, using the first and second potential angles, respective angles associated with each of the one or more objects.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: May 9, 2023
    Assignee: Aptiv Technologies Limited
    Inventors: Zhengzheng Li, Xin Zhang, Yu Zhang
  • Patent number: 11635507
    Abstract: In implementations of systems for estimating three-dimensional trajectories of physical objects, a computing device implements a three-dimensional trajectory system to receive radar data describing millimeter wavelength radio waves directed within a physical environment using beamforming and reflected from physical objects in the physical environment. The three-dimensional trajectory system generates a cloud of three-dimensional points based on the radar, each of the three-dimensional points corresponds to a reflected millimeter wavelength radio wave within a sliding temporal window. The three-dimensional points are grouped into at least one group based on Euclidean distances between the three-dimensional points within the cloud. The three-dimensional trajectory system generates an indication of a three-dimensional trajectory of a physical object corresponding to the at least one group using a Kalman filter to track a position and a velocity a centroid of the at least one group in three-dimensions.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: April 25, 2023
    Assignee: Adobe Inc.
    Inventors: Jennifer Anne Healey, Haoliang Wang, Ding Zhang
  • Patent number: 11635509
    Abstract: A radio frequency (RF) imaging device comprising a display receives a three-dimensional (3D) image that is a superposition of two or more images having different image types, which may include at least a 3D RF image of a space disposed behind a surface. A plurality of input control devices receive a user input for manipulating the display of the 3D image. Alternatively or additionally, the radio frequency (RF) imaging device may receive a three-dimensional (3D) image that is a weighted combination of a plurality of images, which may include a 3D RF image of a space disposed behind a surface, an infrared (IR) image of the surface, and a visible light image of the surface. A user input may specify changes to the weighted combination. In another embodiment, the RF imaging device may include an output device that produces a physical output indicating a detected type of material of an object in the space.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: April 25, 2023
    Assignee: Fluke Corporation
    Inventors: Mabood Ghazanfarpour, Brian Knight
  • Patent number: 11631932
    Abstract: The disclosure relates to an antenna array for a filling level measuring device. The antenna array comprises an antenna, a horn antenna, a plastic housing, a printed circuit board and a casting compound. The antenna is adapted to communicatively connect the printed circuit board to an external device, the horn antenna comprises the form of a hollow truncated cone, and at least an inner side of the horn antenna is provided with a metallic material. Furthermore, the antenna, the horn antenna, the printed circuit board and the casting compound are arranged within the plastic housing, and the antenna and the horn antenna are at least partially surrounded by the casting compound.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: April 18, 2023
    Assignee: VEGA GRIESHABER KG
    Inventors: Roland Baur, Daniel Schultheiss
  • Patent number: 11630183
    Abstract: A method for interference reduction between radar units. The method is performed by a radar unit and comprises: receiving one or more radar frames, wherein the one or more radar frames correspond to one or more respective time intervals during which the radar unit was activated to transmit and receive signals to produce data samples of the one or more radar frames; and determining whether the one or more radar frames have a higher presence of data samples that are subject to interference from other radar units in a first half of their corresponding time intervals than in a second, later, half of their corresponding time intervals. In case the presence is higher in the first half of their corresponding time intervals, a scheduled time interval of an upcoming radar frame to be produced by the radar unit is postponed, and otherwise it is advanced.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: April 18, 2023
    Assignee: Axis AB
    Inventors: Adham Sakhnini, Andreas Glatz, Axel Landgren, Mattias Simonsson, Anders Skoog, Anders Mannesson, Sebastian Heunisch, Stefan Adalbjörnsson, Karl Nordin
  • Patent number: 11624821
    Abstract: An exemplary system, method and computer-accessible medium for generating an image(s) or a video(s) of an environment(s), which can include, for example, generating a first millimeter wave (mmWave) radiofrequency (RF) radiation using a mobile device(s), providing the first mmWave RF radiation to the at least one environment, receiving, at the mobile device(s), a second mmWave RF radiation from the environment(s) that can be based on the first mmWave RF radiation, and generating the image(s) or the video(s) based on the second mmWave RF radiation.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: April 11, 2023
    Assignee: NEW YORK UNIVERSITY
    Inventor: Theodore S. Rappaport
  • Patent number: 11619704
    Abstract: A detection device includes: a transmitter that transmits a high-frequency signal as a transmission signal; a receiver that receives a reception signal including a reflection signal formed by reflecting the transmission signal at a target; and a controller that detects the target based on a frequency of the reflection signal, and changes a frequency of the transmission signal based on a frequency of the reception signal.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: April 4, 2023
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Maiko Saito, Masaru Sakurai, Syunichi Iizuka, Masahiro Yanagi, Kimihiro Maruyama
  • Patent number: 11614537
    Abstract: Methods and systems are provided for generating an on-demand distributed aperture by mechanical articulation. In some aspects, a process can include steps for determining a location of an autonomous vehicle, determining whether a maneuver requires long range detections or medium range detections based on the location of the autonomous vehicle, positioning at least two articulated radars based on the determining of whether the maneuver requires long range detections or medium range detections, and enabling a mode of resolution based on the positioning of the at least two articulated radars and by utilizing a static radar. Systems and machine-readable media are also provided.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: March 28, 2023
    Assignee: GM Cruise Holdings LLC.
    Inventors: Devin Cass, Jack Stepanian, Daniel Flores Tapia
  • Patent number: 11614531
    Abstract: A co-prime coded DDM MIMO radar system, apparatus, architecture, and method are provided with a reference signal generator (112) that produces a transmit reference signal; a plurality of DDM transmit modules (11) that produce, condition, and transmit a plurality of transmit signals over which each have a different co-prime encoded progressive phase offset from the transmit reference signal; a receiver module (12) that receives a target return signal reflected from the plurality of transmit signals by a target and generates a digital signal from the target return signal; and a radar control processing unit (20) configured to detect Doppler spectrum peaks in the digital signal, where the radar control processing unit comprises a Doppler disambiguation module (25) that is configured with a CPC decoder to associate each detected Doppler spectrum peak with a corresponding DDM transmit module, thereby generating a plurality of transmitter-associated Doppler spectrum peak detections.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: March 28, 2023
    Assignee: NXP USA, Inc.
    Inventors: Ryan Haoyun Wu, Dongyin Ren, Satish Ravindran
  • Patent number: 11609306
    Abstract: According to an aspect, method in a radar receiver system comprising, receiving a radar signal reflected from a target on a plurality of antennas, wherein the radar signal is a frequency modulated continuous wave (FMCW) signal comprising plurality of chirps, extracting a plurality of range bins from the radar signal, generating a plurality of reference angles and a plurality of reference velocities from a plurality of reference parameters, determining a plurality of reference weights from the plurality of reference angles and plurality of reference velocities, filtering the radar signal with the filter weights set to equal to the plurality of reference weights.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: March 21, 2023
    Inventor: Ganesan Thiagarajan
  • Patent number: 11604271
    Abstract: Apparatus and method configured to determine locations of man-made objects within synthetic aperture radar (SAR) imagery. The apparatus and method prescreen SAR imagery to identify potential locations of man-made objects within SAR imagery. The potential locations are processed using a change detector to remove locations of natural objects to produce a target image containing location of substantially only man-made objects.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: March 14, 2023
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kenneth I. Ranney, David C. Wong, Tuan That Ton, Brian R. Phelan
  • Patent number: 11598841
    Abstract: A system for distributed dual-function radar-communication comprises a plurality of dual-function radar transmitters positioned within a region of interest, each configured to transmit at least one radar waveform, with each transmitter for having a minimum transmit power, a maximum transmit power, and a working transmit power, a plurality of radar receivers positioned within the region of interest, each configured to receive the radar waveforms, at least one controller communicatively connected to at least one connected transmitter of the plurality of dual-function radar transmitters, configured to calculate a vector of transmit power values for the plurality of dual-function radar transmitters. A method of transmitting a radar waveform is also disclosed.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: March 7, 2023
    Assignees: Temple University—Of The Commonwealth System of Higher Education, Governemnt of the United States, as represented by the Secretary of the Air Force
    Inventors: Ammar Ahmed, Yimin Daniel Zhang, Braham Himed
  • Patent number: 11601214
    Abstract: A system and method for nulling or suppressing interfering signals directed toward moving platforms based, at least in part, on dynamic motion data of the moveable platform is provided. The system may be an interference nulling system carried by a moveable platform and may include an antenna array including two or more antenna elements that generates at least one initial steerable null radiation pattern, dynamic motion data logic that determines dynamic motion data of the moveable platform; and update logic that updates the at least one initial steerable null radiation pattern based, at least in part, on the dynamic motion data. The at least one updated steerable null radiation pattern is directed toward a direction from which interfering signals are being transmitted from an interfering signal source.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: March 7, 2023
    Assignee: BAE Systems Information and Electronic System Integration Inc.
    Inventors: Paul D. Zemany, Matthew F. Chrobak, Egor V. Degtiarev
  • Patent number: 11598868
    Abstract: A microwave single pixel imager apparatus and method of using same. Sampling a targeted scene includes the following. A plurality of modulated antenna patterns is generated using a reflectarray. A plurality of antenna temperatures respectively corresponding to the plurality of modulated antenna patterns is measured. A retrieved scene corresponding to the sampled targeted scene is generated. Generating a retrieved scene corresponding to the sampled targeted scene includes the following. The plurality of modulated antenna patterns and the corresponding plurality of antenna temperatures are fed into a compressive sensing imaging algorithm.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: March 7, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Justin P. Bobak, Hatim F. Alqadah, Scott M. Rudolph, Michael W. Nurnberger
  • Patent number: 11592551
    Abstract: A radome for a radar sensor of a motor vehicle, having at least one main body facing the radar sensor, through which main body radar beams are intended to pass and which is made of at least one optically non-transparent material, which radome has a first dielectric constant at least on a side facing away from the radar sensor, wherein the radome also has an optically transparent foil with a second dielectric constant which lies between the first dielectric constant and the dielectric constant of air, said foil being applied on the side facing away from the radar sensor and at least in the region of the main body through which the radar beams are intended to pass.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: February 28, 2023
    Assignee: AUDI AG
    Inventor: Michael Schwenkert
  • Patent number: 11585894
    Abstract: A method for training a trainable module for evaluating radar signals. The method includes feeding actual radar signals and/or actual representations derived therefrom of a scene observed using the actual radar signals to the trainable module and conversion thereof by this trainable module to processed radar signals and/or to processed representations of the respective scene, and using a cost function to assess to what extent the processed radar signals are suited for reconstructing a movement of objects or to what extent the processed representations contain artifacts of moving objects in the scene. Parameters, which characterize the performance characteristics of a trainable module, are optimized with regard to the cost function. A method is also provided for evaluating moving objects from radar signals.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: February 21, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Gor Hakobyan, Kilian Rambach
  • Patent number: 11579234
    Abstract: A direction-finding antenna includes at least a first set of radiating elements configured to radiate at least a first wavelength (?1) and a second set of radiating elements configured to radiate at a second wavelength (?2) that is shorter than the first wavelength (?1). The first set of radiating elements defines a first circle having a first radius. The second set of radiating elements defines a second circle having a second radius that is smaller than the first radius of the first circle. The direction-finding antenna further includes a transmission line-based multiplexer configured to selectively couple the first set of radiating elements or the second set of radiating elements to a radio frequency (RF) feed line, or a plurality of switches configured to selectively couple selected radiating elements of the first set of radiating elements or the second set of radiating elements to the RF feed line.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: February 14, 2023
    Assignee: Rockwell Collins, Inc.
    Inventors: Jiwon L. Moran, James B. West
  • Patent number: 11579249
    Abstract: A radar detection method may include: transmitting a first radar signal in a field of view and receiving a second radar signal originated from reflections of the first radar signal in the field of view; generating a detection profile by processing the first and second radar signals, the detection profile representing intensities of the second radar signal as a function of positions in the field of view; and analyzing the detection profile to identify targets in the field of view. Analyzing the detection profile may include: using a first mode of analysis, with lower sensitivity, for first cycles, wherein the first mode of analysis is configured to detect a target entering the field of view; using a second mode of analysis, with higher sensitivity, for second cycles following the first cycles, wherein the second mode of analysis is configured to detect stay of the target in the field of view.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: February 14, 2023
    Assignee: INXPECT S.p.A.
    Inventors: Andrea Tartaro, Ugo Bertacchini, Lorenzo Nava