Patents Examined by Timothy Meeks
  • Patent number: 8709548
    Abstract: A method of making a sputtering target includes providing a backing structure, and forming a copper indium gallium sputtering target material on the backing structure by spray forming.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: April 29, 2014
    Assignee: Hanergy Holding Group Ltd.
    Inventors: A. Piers Newbery, Timothy Kueper, Daniel R. Juliano
  • Patent number: 8709547
    Abstract: The invention relates to the use of a super-slippery thin-layer film or coating for enhancing the lubrication capacity of a part to be subjected to great friction and wear. The film of the invention for improving the lubrication capacity of parts to be subjected to important friction and wear includes at least: a layer (3) of a hard material selected from titanium nitride (TiN), chromium nitride (CrN), titanium carbide (TiC), chromium carbide (CrC), tungsten carbide (W2C) and tungsten carbide-carbon composites (WC/C), alumina (AI2O3), molybdenum sulphide (MoS2), and materials of the hydrogenated amorphous carbon type (a: CH), the layer including on one surface thereof a series of dips and protrusions; and a layer (4) of an oleophilic material. The invention can particularly be used in the field of mechanics.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: April 29, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Cedric Ducros, Jerome Gavillet
  • Patent number: 8703239
    Abstract: The invention provides an image forming method having at least: applying, onto a recording medium, an ink composition containing at least a water-soluble organic solvent, a pigment, a polymer particle and water; and removing at least a part of the water-soluble organic solvent from the ink composition on the recording medium. The water-soluble organic solvent contains at least a water-soluble organic solvent having a vapor pressure of less than 10 Pa at 20° C., a boiling temperature of less than 260° C., and an SP value of less than 25, at a content of 30 mass % or more with respect to the total water-soluble organic solvent content of the ink composition.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: April 22, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Tomoyuki Ohzeki, Yoshimitsu Arai, Kaoru Tojo, Masao Ikoshi
  • Patent number: 8703241
    Abstract: This innovation is relevant to a surface preparation of pre-fabricated steel parts, able to guarantee an excellent contact between the surface to be coated, and the molten bath, based on a Zinc-alloy containing Aluminum between 0.01 and 0.1 wt %. In a greater detail this invention is related to a procedure for hot-dip coat steel parts with a Zn—Al-alloy, according to which the parts are properly pickled and then immersed into an aqueous flux solution containing ZnCl2, NH4Cl, Bi2O3, and KCl, at a pH between 0.1 and 1.5 and a temperature in the range 4 and 50° C., for an immersion time between 10 s and 10 minutes. Using the flux solution according to the present innovation, it is possible to coat discontinuously with a Zn—Al-alloy, parts fabricated either with plain Carbon steels either high-strength steels. Furthermore, steels known commercially as Sandelin or Iper-sandelin, may be also coated without surface defects and with a glossy appearance.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: April 22, 2014
    Assignee: Setra S.R.L.
    Inventor: Ugo Bottanelli
  • Patent number: 8697186
    Abstract: A process for manufacturing a mask having submillimetric openings, in which: for a masking layer, a first solution of colloidal nanoparticles in a first solvent is deposited, the particles having a given glass transition temperature Tg, the drying of the masking layer, known as the first masking layer, is carried out at a temperature below said temperature Tg until a mask having a two-dimensional network of substantially straight-edged submillimetric openings, that defines a mask zone known as a network mask zone is obtained, a solid mask zone is formed by a liquid deposition, on the face, of a second masking zone, the solid mask zone being adjacent to and in contact with the network mask zone, and/or at least one cover zone is formed, the cover zone being in contact with the network mask zone, and/or after the drying of the first masking layer, a filled mask zone is formed by filling, via a liquid route, openings of a portion of the network mask zone.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: April 15, 2014
    Assignee: Saint-Gobain Glass France
    Inventors: Georges Zagdoun, Bernard Nghiem, Emmanuel Valentin, Svetoslav Tchakarov
  • Patent number: 8691337
    Abstract: Certain example embodiments of this invention relate to techniques for applying an overcoat (e.g., which may include an organic material) to a coated article having a layer stack already disposed thereon in order to reduce the potential for surface marring. An evacuative process may be used to deposit the mar reducing overcoat. The coated article including the mar-reducing overcoat has a contact angle greater than, and a surface friction less than, a contact angle and a surface friction of the single- or multi-layer stack supported by the substrate alone. Any marring due to cat-scratching or the like preferably would not be visible at 4× magnification following application of the mar reducing overcoat.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: April 8, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Richard Blacker, Hong Wang
  • Patent number: 8691322
    Abstract: A method for measuring the thickness of a coating on a component section of a rotating component, wherein a heat expansion of the component section is determined by detecting a component core temperature and an actual coating thickness is produced, a device for conducting a method of this type having a temperature detecting system and having an evaluating device, as well as a production process and a coating system, are disclosed.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: April 8, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Jochen Zierhut, Susanne Hogger
  • Patent number: 8685498
    Abstract: A coated film with no observable streak is formed. The landing positions of a first discharge liquid discharged through a first printing head and the landing positions of a second discharge liquid discharged through a second printing head are disposed in a mixed manner in an area on a substrate where the first printing head and the second printing head overlap. Which discharge liquids are to be landed is determined according to random numbers. Since a coated film which is formed with the first and second discharge liquids in a mixed manner is disposed between a coated film formed with the first discharge liquids and a coated film formed with the second discharge liquids, a boundary is obscured and no streak appears.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 1, 2014
    Assignee: Ulvac, Inc.
    Inventors: Takahiro Miyata, Masao Murata, Mitsuru Yahagi, Junpei Yuyama, Kyuzo Nakamura, Atsushi Kira, Kou Fuwa, Ai Tanaka, Tooru Okuno, Susumu Sakio
  • Patent number: 8685487
    Abstract: A coating method and a coating apparatus are used to apply coating material to struts of a medical device (e.g., stent) which bound openings. The method involves optically scanning the medical device to produce position information identifying positions of the struts, using the position information to calculate a predetermined position, setting an applying manner to apply the coating material based on the predetermined position, setting an applying path accommodating the applying manner, and relatively moving the medical device and an applicator head along the applying route and path while dispensing the coating material from the applicator head and applying the coating material to the struts.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: April 1, 2014
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Shori Kindaichi, Yasukazu Harada, Kazuyuki Takeda
  • Patent number: 8679593
    Abstract: The present invention relates to a method for coating a static or moving metal substrate with a simple or complex shape, by means of an ultra-thin mineral/organic hybrid coating layer with a thickness comprised between 50 to 500 nm, deposited on the substrate: from an aqueous solution comprising oxide nanoparticles, under basic pH conditions, said substrate being at a temperature lower than 50° C., the total deposition and drying duration being less than 10 seconds, wherein the aqueous solution further comprises at least one pre-polymer.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: March 25, 2014
    Assignee: Centre de Recherches Metallurgiques ASBL-Centrum Voor Research in de Metallurgie VZW
    Inventor: Sébastien Le Craz
  • Patent number: 8673405
    Abstract: In a method for producing a starting material (M, N, N?) for the production of a wear layer (420), a coating (40) with a composition which corresponds to that of the wear layer (420) which is to be produced is chemically undissolved from its substrate (30) and is detached as a solid body, and that the starting material (M, N, N?) is formed by the layer material (60) of the detached coating (40).
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: March 18, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 8673399
    Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.2 and greater, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: March 18, 2014
    Assignee: Nanoptek Corporation
    Inventors: John M. Guerra, Lukas M. Thulin, Amol N. Chandekar
  • Patent number: 8673400
    Abstract: Methods for improving surface roughness of an environmental barrier coating involving providing a component having a plasma sprayed environmental barrier coating; applying a slurry to the environmental barrier coating of the component, the slurry being a transition layer slurry or an outer layer slurry; drying the environmental barrier coating having the applied slurry; and sintering the component to produce a component having an improved surface roughness wherein the slurry includes water; a primary transition material, or a primary outer material; and a slurry sintering aid.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 18, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, Jessica L. Subit
  • Patent number: 8664328
    Abstract: A process is disclosed for preparing an emulsion composition by forming a mixture of a silanol functional organopolysiloxane, a boron compound, an emulsifier, and then admixing water to the mixture to form an emulsion. The resulting emulsions are useful for providing a coating of a high viscosity or dilatant silicone.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: March 4, 2014
    Assignee: Dow Corning Corporation
    Inventors: Severine Cauvin, Glenn Gordon, Bethany Johnson, Donald Liles
  • Patent number: 8658248
    Abstract: A method for atomizing a liquid including providing an atomizer having a liquid supply conduit having an outlet at one end, a gas supply conduit opening into a port in the liquid supply conduit upstream of the outlet, and a means for imparting vibrational energy to the atomizer. In an embodiment, the liquid supply conduit and gas supply conduit are coaxially displaced relative to one another. The method further includes flowing liquid through the liquid supply conduit to the outlet while simultaneously flowing gas through the gas supply conduit, and imparting vibrational energy to the atomizer to atomize the liquid exiting from the outlet. The introduction of gas at the port results in a spray of droplets with improved dimensional properties.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: February 25, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Edward J. Anderson, Jesus R. Ramos
  • Patent number: 8658260
    Abstract: A coating material containing metal oxide is applied to one side of a substrate, both coating and substrate being transparent to visible light. An absorber material is placed in heat transfer proximity to the coating and a laser beam is transmitted through the substrate and through the coating to strike the absorber material at the interface between coating and absorber. The absorber material absorbs optical energy from the laser beam causing the material to heat. Heat from the absorber propagates to the coating to heat a localized region, causing the coating material to anneal. If desired, the coating material can include a doping material that fuses into the coating during annealing.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: February 25, 2014
    Assignee: Panasonic Corporation
    Inventor: Jie Zhang
  • Patent number: 8652580
    Abstract: A manufacturing method of tiles includes the steps of: preparing mixed powder having a water content of 2 to 7% by mixing 30 to 80 parts by weight of calcium hydroxide powder or dolomite plaster powder, 20 to 70 parts by weight of porous aggregate, 0.1 to 5 parts by weight of a first photocatalyst and water; filling the mixed powder into a mold of a molding machine; forming a formed body by pressurizing the filled mixed powder; curing the formed body in a carbon dioxide atmosphere; and forming a thin layer made of a second photocatalyst on a surface of the formed body.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: February 18, 2014
    Assignee: Tagawasangyo Co., Ltd.
    Inventors: Nobuyoshi Yukihira, Tetsuro Oike, Katsuyuki Nakano
  • Patent number: 8647720
    Abstract: A system for applying coatings and more specifically paint coatings is provided that combines fluid stored in separate reservoir containers prior to expelling the mixture for application. The reservoirs may be comprised of collapsible and disposable bags that eject its fluid upon activation of an actuator or expanding bladder. The fluid components are combined and blended together in a mixer that is positioned between the reservoirs and a nozzle.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 11, 2014
    Assignee: The Sherwin-Williams Company
    Inventors: Thomas J. Staunton, Gregory A. Brainard, Michael J. Brainard
  • Patent number: 8642139
    Abstract: Disclosed is a process for making a composite material that contains structured particles. The process includes providing a first precursor in the form of a dry precursor powder, a precursor liquid, a precursor vapor of a liquid and/or a precursor gas. The process also includes providing a plasma that has a high field zone and passing the first precursor through the high field zone of the plasma. As the first precursor passes through the high field zone of the plasma, at least part of the first precursor is decomposed. An aerosol having a second precursor is provided downstream of the high field zone of the plasma and the decomposed first material is allowed to condense onto the second precursor to from structured particles.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: February 4, 2014
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., STC.UNM
    Inventors: Angela Michelle Knapp, Monique N. Richard, Claudia Luhrs, Timothy Blada, Jonathan Phillips
  • Patent number: 8637115
    Abstract: Certain embodiments of the invention may include systems and methods curing a coated optical fiber. The method includes drawing the coated optical fiber through a gas chamber filled with a predetermined gas, drawing the fiber through a cure tube coupled to the gas chamber, and purging at least a portion of an inner surface of the cure tube with a purge gas as the coated optical fiber is drawn through the cure tube.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: January 28, 2014
    Assignee: OFS Fitel, LLC
    Inventors: Peter Haslov, Kariofilis Konstadinidis, Harry Garner