Patents Examined by Timothy Meeks
  • Patent number: 8465789
    Abstract: Various embodiments of methods and devices for coating stents are described herein.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: June 18, 2013
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Jason Van Sciver
  • Patent number: 8465810
    Abstract: An electric field is formed between a material to be coated 18 and a coating sprayer 4 by applying a high voltage of ?1 kV to ?90 kV to an electrode needle 7 at a tip of the coating sprayer 4, while maintaining the material to be coated 18 positively. An inert gas is sprayed from an inert gas spraying nozzle 8 to the material to be coated 18, and a solution having a dielectric substance dissolved in a solvent is simultaneously sprayed from a dielectric solution spraying nozzle 6, while giving negative charge to the dielectric solution, to form a precursor polarization film. The solution is discharged from the spraying nozzle 6 by injecting the inert gas in the spraying nozzle 6. Then, the electric field is formed again and the precursor polarization film is further polarized, to thereby form a piezoelectric/pyroelectric film on the material to be coated 18.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: June 18, 2013
    Assignee: MUNEKATA Co., Ltd.
    Inventor: Yuji Umino
  • Patent number: 8465809
    Abstract: A moving bed reactor system is provided. The system comprises at least one gas inlet, a distributor, a temperature control, a plurality of electrodes, and a spark control circuit. The spark control circuit drives the electrodes and generates a multi-arc discharge when the system is loaded with particles and a gas at approximately atmospheric pressure or greater is being pumped through the system. The multi-arc discharge is useful to create activated species which may improve the rate of a chemical reaction taking place in the moving bed reactor system.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: June 18, 2013
    Assignee: SRI International
    Inventors: Angel Sanjurjo, Kazunori Matsumoto, Carles Colominas, Gopala Krishnan, Palitha Jayaweera, Kai-Hung Lau
  • Patent number: 8460764
    Abstract: In a method of producing ultra-thin graphitic layers, a carbide crystal is placed into a graphitic enclosure. The carbide crystal and the graphitic enclosure are placed into a chamber. The carbide crystal and the graphitic enclosure are subjected to a predetermined environment. Once the predetermined environment is established, the carbide crystal and the graphitic enclosure are heated to a first temperature for a predetermined period of time sufficient to cause at least one non-carbon element to evaporate from a crystal face of the carbide crystal so as to form at least one graphitic layer on the crystal face of the carbide crystal.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: June 11, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: Walt A. de Heer, Xuebin Li, Michael Sprinkle
  • Patent number: 8460745
    Abstract: Methods and apparatus are disclosed for loading a therapeutic substance or drug within a lumenal space of a hollow wire having a plurality of side openings along a length thereof that forms a hollow drug-eluting stent with a plurality of side drug delivery openings. Loading a drug within the lumenal space of the hollow stent includes a drug filling step, in which the drug is mixed with a solvent or dispersion medium. The lumenal space may be filled with the drug solution or suspension in a reverse fill process and/or a forward fill process. After the drug filling step, a solvent or dispersion medium extracting step is performed to extract the solvent or dispersion medium from within the lumenal space such that only the drug remains within the hollow stent. A stent cleaning step may be performed to an exterior surface of the hollow stent.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: June 11, 2013
    Assignee: Medtronic Vascular, Inc.
    Inventors: James Mitchell, Justin Peterson, Dishuan Chu, Joseph Traina, Salvador Avelar, Michele Silver
  • Patent number: 8458953
    Abstract: An apparatus and method for treating a least a portion of one or more initial seed samples to create one or more treated seed samples for use in research applications is provided. In various embodiments, the apparatus and method utilize two or more seed treaters operating in parallel to increase throughput for treating a portion of one or more initial seed samples. The apparatus and method may also include a metering station configured to distribute at least a portion of the one or more initial seed samples to the two or more seed treaters. As a result, the apparatus and method are configured to efficiently and accurately treat seed samples.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: June 11, 2013
    Assignee: Pioneer Hi-Bred International, Inc.
    Inventors: James L. Hunter, Timothy P. Meyer
  • Patent number: 8460743
    Abstract: The present invention generally relates to a method for coating ophthalmic lenses, preferably contact lenses, more preferably silicone hydrogel contact lenses. In particular, the present invention is directed to a method for forming a coating comprising a polyionic material on a contact lens, preferably a silicone hydrogel contact lens, directly in the primary package and maintaining the coated contact lens within said primary package until insertion of the coated contact lens in the eye of the contact lens user.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: June 11, 2013
    Assignee: Novartis AG
    Inventors: Achim Müller, Katharina Schmid
  • Patent number: 8455039
    Abstract: A photoresist-coating apparatus includes a substrate on which a particle-detecting area and an invalid particle-detecting area are defined, a nozzle discharging photoresist to the substrate and moving along a direction, and a particle-detecting sensor controlling on and off of the nozzle in the particle-detecting area according to presence of particles, wherein in the invalid particle-detecting area, the nozzle operates independently from detection of the particle-detecting sensor.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: June 4, 2013
    Assignee: LG Display Co., Ltd.
    Inventor: Jae-Yeol Park
  • Patent number: 8449945
    Abstract: A coating method, which uses a coating apparatus including a rotatable tray having a recessed portion for accommodating a substrate and rotatable together with the substrate, a nozzle for supplying a coating liquid, and an applicator for spreading the coating liquid, includes the steps of placing a substrate into the recessed portion of the tray, positioning the nozzle over a non-recessed portion of the upper surface of the tray, supplying a coating liquid from the nozzle, and forming a coating liquid pool only on the non-recessed portion of the upper surface of the tray, moving the applicator in a horizontal direction while maintaining a certain distance with respect to the upper surface of the substrate for spreading the coating liquid of the coating liquid pool over the entire upper surface of the substrate, and releasing the substrate from the recessed portion of the tray.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: May 28, 2013
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Seiji Ohishi, Akihiko Nakamura
  • Patent number: 8445069
    Abstract: A coating method of forming a plurality of layers on a belt-like support continuously traveling, comprising: a step of applying a first coating liquid onto a front surface of the support to form a lower layer on the support; a drying step of removing a solvent in the lower layer until an amount of the residual solvent reaches not more than 100 mg/m2; a step of applying a second coating liquid onto the lower layer after drying to form an upper layer; and a drying step of removing moisture of the upper layer; wherein the drying step of removing moisture of the upper layer comprises: a first drying step of removing moisture in the upper layer until a moisture content of the upper layer reaches not more than 10% of moisture at the time of application within a range in which a following conditional expression (1) is satisfied: (1) temperature (Tw) of the support?average softening temperature (T0) of the lower layer+10° C.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: May 21, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Kenji Hayashi, Manabu Hashigaya, Keisuke Arimura, Go Nishino
  • Patent number: 8440265
    Abstract: A scratch-and-sniff coating is provided comprised of a first coating on a substrate having a water- and heat-resistant second coating thereon, the first coating being comprised of a non-encapsulated flavor/fragrance component and a polysaccharide component, and the second coating comprised of a shellac component. The scratch-and-sniff coating is made by forming a first coating comprised of a non-encapsulated flavor/fragrance component and a polysaccharide component and drying the first coating, and forming a water- and heat-resistant shellac-containing second coating on the first coating, and drying the second coating. An encapsulated flavor/fragrance component may optionally be present in the first coating. The scratch-and-sniff coating can be applied to a package for a consumer article.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: May 14, 2013
    Assignee: Appleton Papers Inc.
    Inventor: Biao Duan
  • Patent number: 8440264
    Abstract: According to one embodiment of the present invention, a method for preparing a brazed surface to receive a coating is disclosed. The method includes providing a brazed surface having a flux layer including a conversion coating and a powder component; and applying an aqueous solution containing a flux-removing agent to the surface to at least partially remove the powder component of the flux layer to obtain a treated brazed surface that is suitable for receiving a subsequent coating layer.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: May 14, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Kimberly Lazarz, Timothy V. Evans
  • Patent number: 8425980
    Abstract: Method of delivering compositions to organic substrates, particularly lumber. Method involves heating a target zone of the substrate and then applying the composition to the surface of the substrate wherein the temperature of the composition is lower than that of the target zone of the substrate. Compositions include biocidal, strength modifiers, waterproofing and polymers.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: April 23, 2013
    Assignee: Mattersmiths Technologies Limited
    Inventor: Nigel Paul Maynard
  • Patent number: 8420160
    Abstract: The present invention provides a method for producing a sintered NdFeB magnet having high coercivity and capable of being brought into applications without lowering its residual magnetic flux density or maximum energy product and without reprocessing. The method for producing a sintered NdFeB magnet according to the present invention includes applying a substance containing dysprosium (Dy) and/or terbium (Tb) to the surface of the sintered NdFeB magnet forming a base body and then heating the magnet to diffuse Dy and/or Tb through the grain boundary and thereby increase the coercivity of the magnet.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: April 16, 2013
    Assignee: Intermetallics Co., Ltd.
    Inventor: Masato Sagawa
  • Patent number: 8420173
    Abstract: A production method for producing a wrapper for cigarettes is provided wherein, with a web kept traveling, a combustion inhibitor in liquid form is intermittently applied to one surface of the web to form undried banded layers arranged with a predetermined space therebetween in the traveling direction of the web, water is applied to the surface of the web over its entire area before or after the combustion inhibitor is applied, and then the web is rapidly dried.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: April 16, 2013
    Assignee: Japan Tobacco Inc.
    Inventors: Shinzo Kida, Yuzuru Sakuma, Takafumi Izumiya
  • Patent number: 8420185
    Abstract: A method for forming a metal film with twins is disclosed. The method includes: (a) forming a metal film over a substrate, the metal film being made of a material having one of a face-centered cubic crystal structure and a hexagonal close-packed crystal structure; and (b) ion bombarding the metal film at a film temperature lower than ?20° C. in a vacuum chamber and with an ion-bombarding energy sufficient to cause plastic deformation of the metal film to generate deformation twins in the metal film.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: April 16, 2013
    Assignee: National Tsing Hua University
    Inventors: Yu-Lun Chueh, Tsung-Cheng Chan, Chien-Neng Liao
  • Patent number: 8419855
    Abstract: Methods and apparatus for processing substrates are disclosed herein. The process chamber includes a chamber body, a substrate support pedestal, a pump port and a gas injection funnel. The chamber body has an inner volume and the substrate support pedestal is disposed in the inner volume of the chamber body. The pump port is coupled to the inner volume and is disposed off-center from a central axis of the substrate support pedestal. The pump port provides azimuthally non-uniform pumping proximate to a surface of the substrate support pedestal and creates localized regions of high pressure and low pressure within the inner volume during use. The gas injection funnel is disposed in a ceiling of the chamber body and opposite the substrate support pedestal. The gas injection funnel is offset from the central axis of the substrate support pedestal and is disposed in a region of low pressure.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: April 16, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Nir Merry, Son T. Nguyen
  • Patent number: 8420179
    Abstract: A production assembly and associated process for mass producing such as a thermoplastic pallet and which utilizes a multiple insert supporting and continuously moving carousels inter-faceable with an input line upon which is transported a plurality of rigid and planar shaped inserts, as well as an output line a spaced relationship from the input line for removing, from the carousel, the resin coated articles. The invention further teaches a series of subset variants for spray applying a two part resin and hardener upon the insert according to a selected thickness, following which the inserts are cured and dried prior to transferring to the output line and in order to create a finished product.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: April 16, 2013
    Assignee: Orin Collapsibles, LLC
    Inventor: Miguel A. Linares
  • Patent number: 8420159
    Abstract: The method of fabricating a magnetic head slider includes steps of: forming a first protective film on an air bearing surface of a magnetic head slider on which either a recording element or a reproduction element is formed or on which both a recording element and a reproduction element are formed; removing a portion of the first protective film to reduce the thickness of the first protective film and forming a second protective film over the first protective film that has been reduced in thickness; and forming an uneven portion for controlling the flying characteristics of the magnetic head slider on the air bearing surface of the magnetic head slider; wherein the formation of the uneven portion is carried out after the first protective film has been formed and before the second protective film is formed, or after the second protective film has been formed.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: April 16, 2013
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Kunihiro Ueda, Hong Xin Fang, Dong Wong
  • Patent number: 8414968
    Abstract: An in-line film forming apparatus capable of conveying a carrier at a high speed, increasing the exhaust capability within a film forming chamber, and easily realizing a high vacuum degree in a short time is provided. A conveyor mechanism has a linear motor drive mechanism which drives the carrier in a noncontact state, a horizontal guide mechanism which is provided so as to be able to contact a side portion of the carrier, and guides the carrier driven by the linear motor drive mechanism in a horizontal direction, and a vertical guide mechanism which is provided so as to be able to contact a lower end of the carrier, and guides the carrier driven by the linear motor drive mechanism in the vertical direction.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: April 9, 2013
    Assignee: Showa Denko K.K.
    Inventor: Satoru Ueno