Abstract: A foil-like functional material (1) providing a predefined function and may be used for targeted physical, chemical, physicochemical, biological, technical and technological purposes, and in which is arranged a support medium (2), which comprises a total support volume, has a cross-sectional extent (7) of ?100 ?m, like a matrix, and is formed from linear support elements (3a) and node-like support elements (3b), which form the substance components of the support medium (2) and pass through the total support volume to form a strip-like extent with interconnected partial volumes (5), situated therein and spanned by support elements (3) close by. The support elements (3) are sheathed with a first functional substance (4) which provides a first function. The remaining volume of the total support volume is filled with one second functional substance (6) which differs from the first function.
Abstract: According to an embodiment, a porous electrode comprises a three-dimensional nanostructured porous catalyst film including a catalyst material promoting an oxygen reduction and evolution reactions, having an aligned pore structure, and having an upper surface and a lower surface opening the pore structure and a porous current collecting layer interfacially adhered to the three-dimensional nanostructured porous catalyst film by a binder polymer.
Type:
Grant
Filed:
December 2, 2021
Date of Patent:
December 10, 2024
Inventors:
Seokwoo Jeon, Gayea Hyun, Yong-Mook Kang, Mihui Park, Seonyong Jo, Yong Min Lee, Joonam Park, Seungwon Jung
Abstract: This application relates to the battery field, and specifically, to an electrode plate, an electrochemical apparatus, a battery module, a battery pack, and a device. The electrode plate in this application includes a current collector and an electrode active material layer disposed on at least one surface of the current collector, where the current collector includes a support layer and a conductive layer disposed on at least one surface of the support layer, a single-side thickness D2 of the conductive layer satisfies 30 nm?D2?3 ?m, and a conductive primer layer including a conductive material and a bonding agent is further disposed between the current collector and the electrode active material layer. The electrode plate in this application has good machinability. An electrochemical apparatus including the electrode plate has high energy density, good electrical performance, and long-term reliability.
Abstract: The present invention relates to the new process of preparation of a Li-rich layered oxide based on Mn and optionally on Ni and/or Co in which F is incorporated within the crystal of the oxide (or “fluorinated oxide”). It also relates to the new fluorinated oxide its use as a component in a cathode of a battery.
Type:
Grant
Filed:
April 25, 2019
Date of Patent:
November 12, 2024
Assignees:
LE CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, COLLEGE DE FRANCE, SPECIALTY OPERATIONS FRANCE
Inventors:
Jean-Marie Tarascon, Jiwei Ma, Laure Bertry, Robin Amisse, Marc-David Braida, Thierry Le Mercier, Valérie Buissette
Abstract: Power supply device is power supply device to be fixed to power supply target equipment, the power supply device including: a plurality of battery cells each having a prismatic outer covering can; a pair of end plates that cover both side end faces of a battery stack in which the plurality of battery cells are stacked; a plurality of fastening members that are plates extending in a stacking direction of the plurality of battery cells and are arranged on opposed side faces of the battery stack to fasten end plates to each other; bracket for fixing the pair of end plates to power supply target equipment; guide mechanism that slides end plate in the stacking direction of the battery stack at at least one interface between end plate and bracket; and elastic body arranged at at least one interface between end plate and bracket.
Abstract: An electrolyte sheet for solid oxide fuel cells includes a ceramic plate body having rounded corners in a plan view from a thickness direction of the ceramic plate body, the ceramic plate body having a thickness of 200 ?m or less, and each of the rounded corners having a ratio Dmax/Dmin of 1.0 to 1.1, wherein Dmax and Dmin respectively represent maximum and minimum values between distances D from an intersection of extension lines of two sides of the ceramic plate body adjacent to a respective corner to starting points of the respective extension lines in the plan view.
Abstract: There is disclosed a hybrid composite anode for lithium-ion batteries comprising silicon nanoparticles, multi-walled carbon nanotube (MWCNTs) flakes, and a polymer binder which enables enhanced capacity retention of the hybrid composite anode. A process of fabrication of an anode for a lithium-ion battery is also disclosed, the process comprising the steps of fabricating carbon nanotube (CNT) mats on an anode current collector; dispersing the fabricated CNT mats in a mixture of deionized (DI) water to ethanol using a probe sonicator and magnetic stirrer; and adding silicon nanoparticles, multi-walled carbon nanotube (MWCNTs) flakes, and a polymer binder to the mixture, forming Si-MWCNT nanocomposite (SMC) anodes.
Type:
Grant
Filed:
December 27, 2022
Date of Patent:
October 22, 2024
Assignees:
HEIDRON ENERGY RESEARCH & CONSULTANCY CO LLC, KHALIFA UNIVERSITY OF SCIENCE AND TECHNOLOGY
Abstract: The present invention relates to an electrode of a double-layer structure including a different type of particulate active material having a different average particle diameter, and a secondary battery including the same, and according to the present invention, the mechanical strength and stability of the electrode increases, and the secondary battery to which they are applied exhibits excellent discharge capacity.
Type:
Grant
Filed:
July 29, 2020
Date of Patent:
October 15, 2024
Assignee:
LG ENERGY SOLUTION, LTD.
Inventors:
Dae Jin Lee, Dong Hwi Kim, Jin Tae Hwang, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
Abstract: A control device includes a first accumulation unit configured to accumulate first energy, a second accumulation unit configured to accumulate second energy different from the first energy, and a supply unit configured to supply either or both of second energy obtained by converting first energy accumulated by the first accumulation unit and second energy accumulated by the second accumulation unit to an external device. The amount of second energy that is supplied from the supply unit to the external device is calculated on the basis of the amount of second energy supplied to a drive unit via the supply unit to move the moving body to a destination, the amount of first energy accumulated by the first accumulation unit, and the amount of second energy accumulated by the second accumulation unit, and a display device is caused to display a supply available time according to the calculated amount of second energy.
Abstract: A nonaqueous electrolyte secondary battery includes a sulfur-containing positive electrode, a negative electrode, a nonaqueous electrolyte, and a cation exchange resin layer which is disposed between the positive electrode and the negative electrode and has a first surface having a roughness factor of 3 or more. A method for producing a nonaqueous electrolyte secondary battery includes a sulfur-containing positive electrode, a negative electrode, and a cation exchange resin layer which is interposed between the positive electrode and the negative electrode and has a first surface having a roughness factor of 3 or more.
Abstract: A positive electrode current collector and a positive electrode plate, a battery, a battery module, a battery pack, and an apparatus including the positive electrode current collector are provided. In some embodiments, a positive electrode current collector is provided, including an organic support layer and an aluminum-based conductive layer disposed on at least one surface of the organic support layer, where the aluminum-based conductive layer contains Al and at least one modifying element selected from O, N, F, B, S, and P, an XPS spectrogram of the aluminum-based conductive layer with a surface passivation layer removed through etching has at least a first peak falling in a range of 70 eV to 73.5 eV and a second peak falling in a range of 73.5 eV to 78 eV, and a ratio x of peak intensity of the second peak to that of the first peak satisfies 0<x?3.0.
Abstract: A separator for an electrochemical device and an electrochemical device comprising the same. The separator comprises a porous polymer substrate and a heat resistant coating layer on at least one surface of the porous polymer substrate. The heat resistant coating layer is a porous polymer layer having pores, and comprises a polyvinyl pyrrolidone-based polymer and a polyvinylidene fluoride (PVDF)-based polymer.
Type:
Grant
Filed:
April 29, 2020
Date of Patent:
September 24, 2024
Assignee:
LG ENERGY SOLUTION, LTD.
Inventors:
Myeong-Soo Kim, Hye-Jin Kwon, Su-Jin Yoon
Abstract: A negative electrode active material including: silicon-containing composite particles including SiOx (0<x<2) and pores; and a carbon layer on a surface of the silicon-containing composite particles and in the pores, in which the carbon layer includes a metal, the metal includes at least one selected from the group consisting of Li, Na and K, and the pores have an average diameter in a range of 2 nm to 45 nm, a negative electrode including the same, a secondary battery including the negative electrode and a method for preparing the negative electrode active material.
Type:
Grant
Filed:
August 11, 2022
Date of Patent:
July 30, 2024
Assignee:
LG ENERGY SOLUTION, LTD.
Inventors:
Semi Park, Sun Young Shin, Ilgeun Oh, Su Min Lee, Yong Ju Lee
Abstract: An aluminum battery negative electrode structure includes an aluminum foil and a coating layer. The coating layer is arranged on the aluminum foil. A material of the coating layer includes a high specific surface area carbon material. A specific surface area of the high specific surface area carbon material ranges from 500 m2/g to 3,000 m2/g.
Type:
Grant
Filed:
November 2, 2022
Date of Patent:
July 23, 2024
Assignee:
APh ePower Co., Ltd.
Inventors:
Jui-Hsuan Wu, Shih Po Ta Tsai, Yi Hsiu Wang, Wei-An Chen
Abstract: A non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery including the same are disclosed herein. In some embodiments, a non-aqueous electrolyte solution includes a lithium salt, an organic solvent, a first additive, and a second additive, wherein the first additive is lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide, and the second additive is tetravinylsilane.
Type:
Grant
Filed:
November 8, 2019
Date of Patent:
July 16, 2024
Assignee:
LG Energy Solution, Ltd.
Inventors:
Hyun Seung Kim, Chul Haeng Lee, Yu Ha An, Jeong Woo Oh
Abstract: A method for forming a battery anode can include: forming a slurry including active material comprising silicon particles, wherein the silicon particles can be derived from silica fumes, depositing the slurry on an current collector, drying the deposited slurry to form a deposited film, and compacting the deposited film to form the battery anode.
Abstract: The present disclosure relates to a negative electrode material and methods of preparation and use relating thereto. The electrode material comprises a plurality of electroactive material particles, where each electroactive material particle includes an electroactive material core and an electronically conductive coating. The method includes contacting an electroactive material precursor including a plurality of electroactive material particles with a solution so as to form an electronically conductive coating on each of the electroactive material particles. The solution includes a solvent and one or more of copper fluoride (CuF2), titanium tetrafluoride (TiF3 or TiF4), iron fluoride (FeF3), nickel fluoride (NiF2), manganese fluoride (MnF2, MnF3, or MnF4), and vanadium fluoride (VF3, VF4, VF5). The electronically conductive coating includes a plurality of first regions and a plurality of second regions. The plurality of first regions include lithium fluoride.
Type:
Grant
Filed:
September 30, 2020
Date of Patent:
June 11, 2024
Assignee:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
Mark W. Verbrugge, Xingcheng Xiao, Qinglin Zhang, Xingyi Yang, Raghunathan K
Abstract: An active material layer of a metal negative electrode includes: active material particles including a negative active material; and an additive having particles larger in average particle size than the active material particles. The metal negative electrode is immersed in an alkaline aqueous solution, and the additive is eluted into the alkaline aqueous solution. In a place where the additive is previously found, a space is defined in the active material layer.
Abstract: This application relates to an electrode active composition, a preparation method thereof, an electrode, a battery, and an apparatus. The electrode active composition includes: a first component, the first component being lithium cobalt oxide particles; and a second component, the second component being ternary material particles. The first component includes lithium cobalt oxide particles with a particle size greater than 11 ?m and lithium cobalt oxide particles with a particle size less than 6 ?m, and a ratio in number of the lithium cobalt oxide particles with a particle size greater than 11 ?m to the lithium cobalt oxide particles with a particle size less than 6 ?m is 0.2-4.8, and in some embodiments, 0.2-2.8. A summed number of the lithium cobalt oxide particles with a particle size greater than 11 ?m and the lithium cobalt oxide particles with a particle size less than 6 ?m accounts for above 90% of a total number of particles in the first component.
Abstract: The Li-ion paradigm of battery technology is fundamentally constrained by the monovalency of the Li-ion. A straightforward solution is to transition to multivalent ion chemistries, with Mg2+ the most obvious candidate due to considerations of size and mass. Despite early interest, the realization of Mg batteries has faced myriad obstacles, including a sparse selection of cathode materials demonstrating the ability to reversibly insert divalent ions. Disclosed herein is evidence of reversible topochemical and electrochemical insertion of Mg2+ into a metastable one-dimensional polymorph of V2O5. Not only does ?-V2O5 represent a rare addition to the pantheon of functional Mg battery cathode materials, but is also distinctive in exhibiting a combination of high stability, high specific capacity due to ion insertion, and moderately high operating voltage.
Type:
Grant
Filed:
December 21, 2018
Date of Patent:
May 21, 2024
Assignee:
THE TEXAS A&M UNIVERSITY SYSTEM
Inventors:
Sarbajit Banerjee, Justin L. Andrews, Abhishek Parija, Luis R. De Jesus Baez