Patents Examined by Tung Lau
  • Patent number: 9594879
    Abstract: A computer implemented system and method for determining the isotopic anatomy of molecules. The system receives a user identified molecule that is to be analyzed, makes an initial guess as to the isotopic anatomy of the molecule, and iteratively refines the initial guess based on one or more observations made by the user. When sufficient iterations have been performed, the system outputs information about the isotopic anatomy of the molecule. The information may then be stored, displayed on a monitor, analyzed for making other conclusions, and/or printed.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: March 14, 2017
    Assignee: California Instutute of Technology
    Inventor: John M. Eiler
  • Patent number: 9590728
    Abstract: A mobile device includes an inertial navigation system (INS) to measure inertial quantities associated with movement of the device, and estimate a kinematic state associated with the movement based on the measured inertial quantities. The device includes a light receiver to record light beams originating from lights at respective image positions in a sequence of images. The device photogrammetrically determines its position relative to the originating lights based on predetermined real-world positions and corresponding image positions of the lights. The device corrects the estimated kinematic state based on the photogrammetrically determined position, to produce a corrected estimated kinematic state.
    Type: Grant
    Filed: September 29, 2012
    Date of Patent: March 7, 2017
    Assignee: Intel Corporation
    Inventors: Richard D. Roberts, Xue Yang
  • Patent number: 9588152
    Abstract: An observation is made that the peak voltage value for a rectified AC voltage signal is substantially the same from cycle to cycle. Using this observation, a method of measuring an AC voltage is used to determine a more accurate RMS voltage value under light load conditions. The method includes rectifying the AC voltage signal to form a rectified signal, sampling the rectified signal to obtain a set of sampled values for each half-cycle of the AC voltage signal, searching the sampled values for each half-cycle to determine a local minimum value for each half-cycle, searching the sampled values following the local minimum value to determine a local maximum value for each half-cycle, and calculating a root mean square value from the local maximum value for each half-cycle thereby determining the root mean square value for each half-cycle of the AC voltage signal.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: March 7, 2017
    Assignee: Flextronics AP, LLC
    Inventors: Zhen Z. Ye, Xiangping Xu
  • Patent number: 9588186
    Abstract: A battery management system for use with a battery under test is disclosed. The system includes a container configured to hold the battery. The system also includes a stress/strain sensor. The container is configured to hold the battery in fixed relationship with respect to the stress/strain sensor. A processor is coupled to the stress/strain sensor, the processor being configured to measure the stress/strain on the battery and determine the state of health (SOH) of the battery based on the measured stress/strain and previously stored SOH relationship data for the battery. The processor may be configured to determine a state of charge (SOC) of the battery based on the measured stress/strain, the SOH of the battery and previously stored SOC relationship data for the battery.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: March 7, 2017
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Craig B. Arnold, John Cannarella
  • Patent number: 9588182
    Abstract: Systems, methods, and devices are provided for estimating when preventive maintenance of power capacitors is called for. Such a system may include, for example, a voltage sensor, a current sensor, and data processing circuitry. The voltage sensor may measure a voltage difference across a phase of a power capacitor. The current sensor may measure a current across the phase of the power capacitor. The data processing circuitry to determine a first instantaneous indication of a difference between a nominal capacitance of the power capacitor and an actual value of the power capacitor based at least in part on the measured first voltage difference and first current.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: March 7, 2017
    Assignee: General Electric Company
    Inventors: Silvio Colombi, Marco Crespan
  • Patent number: 9581520
    Abstract: Embodiments of the present invention provide systems to detect crack-like features in pipeline welds using magnetic flux leakage data and pattern recognition. A screening process, for example, does not affect or change how survey data is recorded in survey tools; only how it is analyzed after the survey data is completed. Embodiments of the present invention can be used to screen for very narrow axial anomalies in the pipeline welds, and may also be used to predict the length of such anomalies. Embodiments of the present invention also produce a listing of the anomalies based on their relative signal characteristics.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: February 28, 2017
    Assignee: Kinder Morgan, Inc.
    Inventors: Noel Duckworth, Ron Sherstan
  • Patent number: 9568517
    Abstract: A diagnostic method and apparatus for self-diagnosis a load side of an electric device to detect the occurrence of the abnormal electricity usage at the load using a simple apparatus based on a current sensor includes checking rated power consumption of a load, measuring power consumption of the load in operation, calculating a change in the power consumption by comparing the rated power consumption of the load with the power consumption of the load in operation, and determining that an abnormal power consumption occurs at the load when the change in the power consumption is outside a predetermined range.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: February 14, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Se Hoon Lim, Hee Jae Jo
  • Patent number: 9559019
    Abstract: Metrology may be implemented during semiconductor device fabrication by a) modeling a first measurement on a first test cell formed in a layer of a partially fabricated device; b) performing a second measurement on a second test cell in the layer; c) feeding information from the second measurement into the modeling of the first measurement; and after a lithography pattern has been formed on the layer including the first and second test cells, d) modeling a third and a fourth measurement on the first and second test cells respectively using information from a) and b) respectively.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: January 31, 2017
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Michael Adel, Leonid Poslavsky, John Fielden, John Madsen, Robert Peters
  • Patent number: 9557246
    Abstract: Disclosed are methods and systems to determine a power plant machine reliability forecast. In an embodiment, a method may comprise obtaining an environmental factor of a power plant machine based on geospatial data of a first area and location data of a second area, obtaining an operating factor of the power plant machine, and determining a reliability forecast based on the obtained environmental factor and the obtained operating factor.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: January 31, 2017
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Benjamin Arnette LaGrange, Alston Ilford Scipio, Dale J. Davis, Timothy Tah-teh Yang
  • Patent number: 9551757
    Abstract: A remaining battery life measuring device may include a first estimator configured to estimate a state of charging of a battery using an open circuit voltage of the battery; a second estimator configured to estimate the state of charging of the battery using charge, discharge, or charge and discharge currents of the battery; a correction unit configured to generate a correction value on the state of charging estimated by the second estimator, based on the state of charging estimated by the first estimator or an output state of charging; and/or a state of charging (SOC) processing unit configured to calculate the output state of charging using the state of charging estimated by the second estimator and an accumulated correction value. The accumulated correction value may be generated based on the correction value.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: January 24, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Kyunggoo Moh
  • Patent number: 9546892
    Abstract: Methods and systems for estimating propellant transfer in an ion propulsion system are disclosed. One example is a method for estimating transfer of a propellant between a first tank and a second tank in an ion propulsion system during a transfer event. The first tank and the second tank are separated by a valve. A flow rate of the propellant through the valve is calculated based on an initial pressure and an initial temperature of each of the first tank and the second tank for a beginning of the transfer event, calculating, based at least in part on the flow rate, a mass of propellant transferred through the latch over a period of time ending at an intermediate time before an end of the transfer event, and determining an intermediate pressure and temperature for each of the first tank and the second tank for the intermediate time.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: January 17, 2017
    Assignee: The Boeing Company
    Inventor: Lloyd C. Kwok
  • Patent number: 9547304
    Abstract: A computer-implemented system and method for attribute-based manufacturing quality control is provided. A specification for manufacturing a part feature is maintained in a database, the specification including a nominal. Also maintained in the database are one or more measurements for the feature on a plurality of parts manufactured in accordance with the specification, each of the measurements associated with one or more attributes, each of the attributes identifying at least one of a circumstance relating to how that measurement was made and how the feature was manufactured. A user selection of one or more of the attributes is received. Each of the measurements that is associated with all of the selected attributes is identified. A score indicative of how close the identified measurements are to the nominal is calculated and displayed.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: January 17, 2017
    Inventor: Michael H S Dunlop
  • Patent number: 9546862
    Abstract: Systems and methods for improving results of wafer higher order shape (HOS) characterization and wafer classification are disclosed. The systems and methods in accordance with the present disclosure are based on localized shapes. A wafer map is partitioned into a plurality of measurement sites to improve the completeness of wafer shape representation. Various site based HOS metric values may be calculated for wafer characterization and/or classification purposes, and may also be utilized as control input for a downstream application. In addition, polar grid partitioning schemes are provided. Such polar grid partitioning schemes may be utilized to partition a wafer surface into measurement sites having uniform site areas while providing good wafer edge region coverage.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: January 17, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Haiguang Chen, Jaydeep Sinha, Sergey Kamensky, Sathish Veeraraghavan, Pradeep Vukkadala
  • Patent number: 9535189
    Abstract: A mobile device comprising a pressure sensor for collecting pressure data, a position-determining subsystem for generating location data including altitude data, and a processor operatively coupled to a memory to generate an atmospheric model based on the pressure data and the location data. In one implementation, the processor is configured to determine an Above Mean Sea Level (AMSL) altitude using a position-determining subsystem, determine a pressure altitude using the pressure sensor, calculate a difference between the pressure altitude and the AMSL altitude, and calculate a temperature at sea level based on the AMSL altitude and pressure altitude. In one implementation, the processor performs a linear regression on an equation AMSL altitude=offset+ScaleFactor*PressureAltitude to solve for the offset and the ScaleFactor, and then estimates the temperature at sea level as 1-ScaleFactor=(T?15)/3. The model may be used to estimate ambient air temperature or weather conditions.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: January 3, 2017
    Assignee: BlackBerry Limited
    Inventors: Nathan Daniel Pozniak Buchanan, Robert George Oliver, Adam Louis Parco
  • Patent number: 9534938
    Abstract: A method and apparatus for automatically measuring and storing a various measured values of an item, or a sequence of measured values of one or more item(s) suitable for single-handed use by a user. In particular, the present invention relates to a mobile computing device with one or more sensors for determining when to measure and record a particular value of one or more items. The mobile computing device may automatically measure the values based on sensing a change in the temperature value or through using proximity as detected by one or more onboard sensors. Additionally, the mobile computing device may automatically measure the values based on coming within range of an external proximity device. In response to automatically measuring the values, the measured values are stored along with additional information for record keeping purposes.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: January 3, 2017
    Assignee: Squadle, Inc.
    Inventors: Le Zhang, William K. Chen
  • Patent number: 9535181
    Abstract: Computing device, computer instructions and method for processing input seismic data d. The method includes a step of receiving the input seismic data d recorded in a first domain by seismic receivers that travel in water, the input seismic data d including up-going and down-going wave-fields; a step of generating a model p in a second domain to describe the input seismic data d; and a step of processing with a processor the model p to obtain an output seismic dataset indicative of the down-going wave-field and substantially free of the up-going wave-field.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: January 3, 2017
    Assignee: CGG SERVICES SA
    Inventor: Gordon Poole
  • Patent number: 9529017
    Abstract: A test and measurement instrument and method of switching waveform display styles includes acquiring an electrical signal, storing peak detect data samples from the electrical signal to one or more memory devices, storing filtered data samples or unfiltered data from the electrical signal, automatically switching to a first waveform display style having the peak detect data samples configured in a first mode when a user selects the unfiltered data, and automatically switching to a second waveform display style having the peak detect data samples configured in a second mode when the user selects the filtered data samples.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: December 27, 2016
    Assignee: Tektronix, Inc.
    Inventors: Gregory A. Martin, David D. Farrell, Evan A. Dickinson
  • Patent number: 9527083
    Abstract: The invention relates to methods and devices for control of an integrated thin-film device with a plurality of microfluidic channels. In one embodiment, a microfluidic device is provided that includes a microfluidic chip having a plurality of microfluidic channels and a plurality of multiplexed heater electrodes, wherein the heater electrodes are part of a multiplex circuit including a common lead connecting the heater electrodes to a power supply, each of the heater electrodes being associated with one of the microfluidic channels. The microfluidic device also includes a control system configured to regulate power applied to each heater electrode by varying a duty cycle, the control system being further configured to determine the temperature each heater electrode by determining the resistance of each heater electrode.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: December 27, 2016
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Kenton C. Hasson, Johnathan S. Coursey, Gregory H. Owen, Gregory A. Dale
  • Patent number: 9504408
    Abstract: Biometric monitoring devices, including various technologies that may be implemented in such devices, are discussed herein. Additionally, techniques for utilizing gyroscopes in biometric monitoring devices are provided. Such techniques may, in some implementations, involve obtaining swimming metrics regarding stroke cycle count, lap count, and stroke type. Such techniques may also, in some implementations, involve obtaining performance metrics for bicycling activities.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: November 29, 2016
    Assignee: Fitbit, Inc.
    Inventors: Jung Ook Hong, Shelten Gee Jao Yuen, Andrew Cole Axley
  • Patent number: 9510067
    Abstract: A non-bussed control module that receives an audio code is provided. The non-bussed control module includes a tone processing module, a self-diagnostic module, and a reporting module. The tone processing module receives the audio code, and sends a trigger signal if the audio code is received. The self-diagnostic module performs a self-diagnostic test for the non-bussed control module if the trigger signal is received, and generates a diagnostic signal indicative of the self-diagnostic test. The reporting module receives the diagnostic signal and determines a type of fault based on the diagnostic signal.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: November 29, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Frank C. Valeri, Scott M. Reilly, Pawel W. Sleboda, Ian R. Singer