Patents Examined by Ula C. Ruddock
  • Patent number: 11799126
    Abstract: A method of preparing a solid electrolyte and an all-solid battery including a solid electrolyte prepared by the method, the method including: contacting a first solvent and a first starting material comprising an alkali metal, sulfur, phosphorus, an element M, or a combination thereof to form a first solution; precipitating a first precursor from the first solution; contacting a second solvent, the first precursor, and a second starting material comprising an alkali metal, sulfur, phosphorus, an element M, or a combination thereof to form a second solution; precipitating a second precursor from the second solution; and heat treating the second precursor to prepare the solid electrolyte, wherein the element M comprises an element of Group 14 of the Periodic Table of the Elements, and the element M and the alkali metal in the first starting material and the second starting material are the same or different.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: October 24, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tomoyuki Tsujimura, Yuichi Aihara, Nobuya Machida
  • Patent number: 11791488
    Abstract: Provided is an electrolyte for a flow battery, the electrolyte being supplied to a flow battery, in which a total concentration of ions of elements of groups 1 to 8 and ions of elements of groups 13 to 16 in the fifth period of the periodic table, and ions of elements of groups 1, 2, and 4 to 8 and ions of elements of groups 13 to 15 in the sixth period of the periodic table, the ions being impurity element ions involved in generation of a gas containing elemental hydrogen, may be 610 mg/L or less and a concentration of vanadium ions may be 1 mol/L or more and 3 mol/L or less.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: October 17, 2023
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kiyoaki Moriuchi, Ryojun Sekine, Takayasu Sugihara
  • Patent number: 11791473
    Abstract: A method is proposed by means of which a composite layer is producible in as simple and controlled a manner as possible, and by means of which composite layers with different predetermined properties can be produced with as little expenditure as possible, and thus economically. The method includes: providing a nanofiber material, comminuting the nanofiber material while forming nanorods, providing a liquid medium, which comprises an ionomer component and a dispersant, dispersing the nanorods in the liquid medium while forming a nanorod ionomer dispersion, and applying the nanorod ionomer dispersion to a surface region of a substrate while forming a composite layer. An electrochemical unit including the composite layer is provided. The composite layer is useful in a fuel cell (hydrogen fuel cell or direct alcohol fuel cell), in a redox flow cell, in an electrolytic cell, or in an ion exchanger, and useful for anion or proton conduction.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: October 17, 2023
    Assignee: Hahn-Schickard-Gesellschaft für angewandte Forschung e.V.
    Inventors: Matthias Breitwieser, Florian Lombeck
  • Patent number: 11791509
    Abstract: A battery pack includes a battery module in which a plurality of battery cells are stacked, a battery case accommodating the battery module, and a battery cooling mechanism configured to cool the battery module. The battery cooling mechanism includes an air guide duct disposed in a first direction orthogonal to a stacking direction of the plurality of battery cells with respect to the battery module, and a cooling fan disposed on a side opposite to the air guide duct with the battery module interposed therebetween in the first direction. An air intake port of the cooling fan is open on a side opposite to the battery module in the first direction.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: October 17, 2023
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Daigo Komatsu
  • Patent number: 11791491
    Abstract: A fuel cell includes a cell stack including a plurality of unit cells stacked in a first direction, a first end plate and a second end plate disposed at respective side ends of the cell stack, and an enclosure coupled to at least one of the first end plate or the second end plate to envelop a side portion of the cell stack, wherein an end portion of the enclosure comprises at least one protruding portion protruding toward the end plate to which the enclosure is coupled, among the first end plate and the second end plate, and wherein the end plate coupled to the enclosure comprises at least one receiving recess formed therein to receive the at least one protruding portion.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: October 17, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Suk Min Baeck, Yong Suk Heo
  • Patent number: 11784370
    Abstract: An electrochemical cell and method of use, including an anode of metal, an air permeable cathode, an electrolyte between the anode and the cathode, and a transition metal phosphide catalyst on the cathode or between the cathode and the electrolyte. Also, a method of generating electrical current with an electrochemical cell by introducing a transition metal phosphide catalyst on a cathode side of the electrochemical cell. The catalyst can be in the form of any suitable nanostructure, such as molybdenum phosphide nanoflakes.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: October 10, 2023
    Assignee: ILLINOIS INSTITUTE OF TECHNOLOGY
    Inventors: Mohammad Asadi, Alireza Kondori, Mohammadreza Esmaeilirad
  • Patent number: 11777171
    Abstract: A buckling structure for a battery of a handheld power tool includes a horizontal opening end formed at a handheld seat of the power tool, a buckling structure arranged on top of a battery base and configured to mutually guide, insert and buckle into the opening end to be integrally attached thereto, the buckling structure comprising: a guiding slot formed at a front side surface of the battery base, two receiving slots formed at two sides of the guiding slot respectively, a pressing member arranged inside the guiding slot and two buckling members arranged inside the receiving slot respectively, and an elastic element connected to the pressing member and each of the buckling members respectively, thereby achieving an assembly and buckling structure having single direction movement and stable, durable structure that is convenient to use and operation.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: October 3, 2023
    Inventor: Yu-Tang Lin
  • Patent number: 11772511
    Abstract: Provided are a vehicle-use energy storage apparatus, a vehicle-use discharge system, a discharge control method, and a vehicle-use energy storage device each capable of ensuring a sufficient amount of electricity as an amount of electricity used during a normal use time while ensuring an amount of electricity which is reserved as spare electricity, and possessing a sufficient charge-discharge cycle. According to an aspect of the present invention, there is provided a vehicle-use energy storage apparatus including an energy storage device having a negative electrode including a negative active material which contains: a first active material made of a carbon material; and a second active material having a higher oxidation potential than the carbon material and having a higher capacity per volume than the carbon material.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: October 3, 2023
    Assignee: GS Yuasa International Ltd.
    Inventors: Shuji Hitomi, Yuya Asada
  • Patent number: 11777079
    Abstract: The present invention describes a silicon-carbon composite anode tor lithium-ion batteries comprising 40-80 weight % of silicon particles, 10-45 weight % of carbon, consisting of carbon black and graphite, and a combination of carboxymethyl cellulose (CMC) and styrene butadiene rubber (SB.R) as a binder. The invention also comprises a method of manufacturing the anode and a Li-ion battery comprising the Si—C composite anode according to the present invention.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: October 3, 2023
    Assignee: ELKEM ASA
    Inventors: Hanne Flaten Andersen, Jorunn Voje
  • Patent number: 11777082
    Abstract: A negative electrode material for lithium ion secondary batteries, including composite material particles containing nanosilicon particles having a 50% particle diameter (Dn50) of 5 to 100 nm in a number-based cumulative particle size distribution of primary particles, graphite particles and an amorphous carbon material; the composite material particles containing the nanosilicon particles at a content of 30 to 60 mass % or less, and the amorphous carbon material at a content of 30 to 60 mass % or less; the composite material particles having a 90% particle diameter (DV90) in the volume-based cumulative particle size distribution of 10.0 to 40.0 ?m, a BET specific surface area of 1.0 to 5.0 m2/g, and an exothermic peak temperature in DTA measurement of 830° C. to 950° C. Also disclosed is a paste for negative electrodes, a negative electrode sheet, a lithium ion secondary battery and a method for manufacturing the negative electrode material.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: October 3, 2023
    Assignees: Showa Denko K.K., Umicore
    Inventors: Yasunari Otsuka, Nobuaki Ishii, Nicolas Marx, Stijn Put
  • Patent number: 11777102
    Abstract: A current collector for electrodes according to an embodiment of the present disclosure may include a polymer film, and a conductive material provided on at least one surface of upper and lower surfaces of the polymer film, wherein the conductive material may have a function of an electrochemical fuse or a function of blocking a short-circuit current.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: October 3, 2023
    Assignee: U&S ENERGY, INC.
    Inventors: Kyung Joon Kim, Seung Ho Choi
  • Patent number: 11769905
    Abstract: An electrochemical device includes a cathode including elemental selenium, elemental sulfur, or selenium-sulfur containing composite; a negative electrode; a separator; and an electrolyte including a poly(alkyleneoxide) siloxane; and a salt; wherein a concentration of the salt in the electrolyte is sufficient to minimize dissolution of polysulfides/polyselenides formed during cycling of the device.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: September 26, 2023
    Assignee: UChicago Argonne, LLC
    Inventors: Gui-Liang Xu, Jianzhao Liu, Zonghai Chen, Khalil Amine
  • Patent number: 11769933
    Abstract: The present disclosure aims to suppress, in a winding type electrode body in which a negative electrode lead is bonded to a winding start side end of a negative electrode collector, electrode plate deformation in association with charge/discharge cycles. A nonaqueous electrolyte secondary battery according to one aspect of the present disclosure includes a winding type electrode body (14). A negative electrode (12) includes a negative electrode lead (20a) bonded to a winding start side end of a negative electrode collector and is wound at least one turn from a winding-direction inner end so as not to face a positive electrode (11) with a separator (13) interposed therebetween. The negative electrode (12) includes an insulating tape (40) adhered to the negative electrode collector so as to straddle a surface of the negative electrode lead (20a) in a winding direction.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: September 26, 2023
    Assignee: PANASONIC ENERGY CO., LTD.
    Inventors: Atsushi Mizawa, Junichi Sugaya, Tomomichi Ueda, Masahiro Nakamura, Kei Kobayashi
  • Patent number: 11769877
    Abstract: The present invention provides a positive electrode for a lithium secondary battery, including a first positive electrode active material including a lithium cobalt-based oxide, and a second positive electrode active material including a lithium composite transition metal oxide containing at least two selected from the group consisting of nickel (Ni), cobalt (Co), and manganese (Mn), wherein, when the state of charge (SOC) of the first positive electrode active material in which the voltage of the lithium secondary battery reaches a constant voltage (CV) at 1 C-rate is referred to as SOC1, and the state of charge (SOC) of the second positive electrode active material in which the voltage of the battery reaches a constant voltage (CV) at 1 C-rate is referred to as SOC2, the SOC1 and the SOC2 satisfy the relationship represented by Equation 1 below. SOC1<SOC2<1.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: September 26, 2023
    Inventors: Joo Sung Lee, Ho June Kim, Min Ji Heo
  • Patent number: 11769871
    Abstract: A lithium secondary battery comprising: a positive electrode and a negative electrode which each has a specific composition and specific properties; and a nonaqueous electrolyte which contains a cyclic siloxane compound represented by general formula (1), fluorosilane compound represented by general formula (2), compound represented by general formula (3), compound having an S—F bond in the molecule, nitric acid salt, nitrous acid salt, monofluorophosphoric acid salt, difluorophosphoric acid salt, acetic acid salt, or propionic acid salt in an amount of 10 ppm or more of the whole nonaqueous electrolyte. This lithium secondary battery has a high capacity, long life, and high output. [In general formula (1), R1 and R2 are an organic group having 1-12 carbon atoms and n is an integer of 3-10. In general formula (2), R3 to R5 are an organic group having 1-12 carbon atoms; x is an integer of 1-3; and p, q, and r each are an integer of 0-3, provided that 1?p+q+r?3.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: September 26, 2023
    Assignees: Mitsubishi Chemical Corporation, MU IONIC SOLUTIONS CORPORATION
    Inventors: Ryoichi Kato, Minoru Kotato
  • Patent number: 11764354
    Abstract: The present invention relates to a negative electrode active material including a silicon-based composite and a carbon-based material, wherein the silicon-based composite includes SiOx (0?x?2) including pores, a polymer disposed in the pores, and a metal compound disposed on a surface of the SiOx (0?x?2) or on the surface and inside of the SiOx (0?x?2), wherein the metal compound is a compound including at least one element selected from the group consisting of lithium (Li), magnesium (Mg), calcium (Ca), and aluminum (Al), a method of preparing the same, and a negative electrode and a lithium secondary battery which include the negative electrode active material.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: September 19, 2023
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Su Min Lee, Je Young Kim, Yong Ju Lee, Sun Young Shin
  • Patent number: 11757124
    Abstract: The present invention relates to an electrode assembly for a secondary battery. The electrode assembly for the secondary battery comprises a radical unit comprising first and second electrode sheets each of which is folded so that both ends thereof overlap each other; and a first separator folded several times and having an upper folded portion into which the first electrode sheet is coupled to be fitted and a lower folded portion into which the second electrode sheet is coupled to be fitted, wherein, in the radical unit, the folded portions of the first and second electrode sheets are cut to form two first electrodes and two second electrodes, which are completely separated from each other, and the first electrode, the first separator, the second electrode, the first separator, the first electrode, the first separator, and the second electrode successively stacked.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: September 12, 2023
    Inventors: Jin Young Son, Hyun Won Lee, Do Hwa Jung, Ye Lin Kim
  • Patent number: 11757108
    Abstract: A method for sealing fuel cell components includes providing a fuel cell component and a screen printing system. A seal can be applied to a predetermined location on the fuel cell component via the screen printing system. The seal can be cured and bonded. A fuel cell can include a plurality of fuel cell components. A seal can be disposed between each of the fuel cell components. The seal is printed via a screen printing process.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: September 12, 2023
    Assignee: HYZON MOTORS INC.
    Inventor: Jie Chen
  • Patent number: 11757151
    Abstract: The present invention relates to a cathode material for a lithium-air battery and a method of manufacturing a cathode using the same. The cathode material of the present invention includes a solvent component and thus includes an electrolyte in a small amount compared to a conventional cathode material, thereby reducing the weight of a cathode manufactured using the cathode material, ultimately increasing the energy density of a lithium-air battery including the cathode.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: September 12, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Seoul National University R&DB Foundation
    Inventors: Sam Ick Son, Young Joon Bae, Hyeok Jun Park, Ki Suk Kang, Young Min Ko, Sung Kwan Park
  • Patent number: 11749825
    Abstract: In an aspect, an electrochemical cell comprises: a positive electrode; a negative electrode; and a solid state electrolyte in ionic communication with the positive electrode and the negative electrode; wherein: the electrolyte is characterized by formula (FX1): MPS3 (FX1); wherein M is one or more metal cations and optionally metal cation vacancies; and wherein at least one of said one or more metal cations is a divalent cation; the electrolyte is characterized by a divalent ion conductivity; and the electrolyte is electrically insulating. The solid state electrolyte is optionally not an electrocatalyst material or does not function as an electrocatalyst in the electrochemical cell during operation (e.g., charging and/or discharging) of the electrochemical cell. The solid state electrolyte is optionally not an electrode or does not function as an electrode in the electrochemical cell during operation (e.g., charging and/or discharging) of the electrochemical cell.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: September 5, 2023
    Assignee: California Institute of Technology
    Inventors: Kimberly A. Robb, Andrew J. Martinolich