Patents Examined by Vincent Q. Nguyen
  • Patent number: 10830806
    Abstract: A method for managing power in an airplane. Power quality data and load management data are collected from airplane systems in the airplane at a variable sampling rate using data collectors assigned to the airplane systems in which the variable sampling rate increases in response to a selected trigger event. The power quality data and the load management data are received by a power monitor from the data collectors during phases of flight for the airplane. A group of load management operations for the airplane systems are performed by a load manager in the airplane during operation of the airplane. The group of load management operations is performed using the power quality data and the load management data received from the data collectors during the phases of flight for the airplane.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: November 10, 2020
    Assignee: The Boeing Company
    Inventors: Anil Kumar, Kamiar J. Karimi, Timothy M. Mitchell, Evelyn M. Matheson, Eugene V. Solodovnik
  • Patent number: 10830839
    Abstract: Magnetic field sensors and sensing methods are provided. A magnetic sensor module is configured to measure a magnetic field whose magnitude oscillates between a first extrema and a second extrema. The magnetic sensor module includes a magnetic sensor configured to generate measurement values in response to sensing the magnetic field, and a sensor circuit. The sensor circuit is configured to generate a measurement signal based on the measurement values, compare the measurement signal to a switching threshold, generate a pulsed output signal having pulses that are generated based on the measurement signal crossing the switching threshold, measure a first characteristic of the measurement signal, update an offset of the switching threshold according to an offset update algorithm based on the measured first characteristic of the measurement signal, and selectively enable and disable the offset update algorithm based on at least a second characteristic of the measurement signal.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: November 10, 2020
    Assignee: Infineon Technologies AG
    Inventors: Simone Fontanesi, Klaus Grambichler, Tobias Werth
  • Patent number: 10830826
    Abstract: Described herein are methods for determining, based on actual crank conditions, an ability of a battery connected to an electric starter motor, to start an internal combustion engine, wherein the battery is a single monobloc or a plurality of monoblocs that are electrically connected in series or parallel. The method may include: receiving battery temperature data, representing a temperature of the battery at a time of cranking the internal combustion engine; receiving voltage data monitored from the battery, determining an instantaneous minimum voltage of the battery during the time of cranking the internal combustion engine; and determining a capability of the battery to crank the internal combustion engine based on the battery temperature data and the instantaneous minimum voltage of the battery.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: November 10, 2020
    Assignee: NORTHSTAR BATTERY COMPANY, LLC
    Inventors: Don Karner, Frank Fleming, Ulf Krohn, Christer Lindkvist
  • Patent number: 10830918
    Abstract: A magneto-inductive transmit antenna is provided that includes a shield formed of a magnetic material, a magnetic field source mounted on a first side of the shield, and a coil wrapped around the shield to define a number of turns. The coil is configured to conduct a current therethrough. The magnetic material is configured to exhibit a change in permeability based on the current conducted through the coil when the current is conducted through the coil. The change in permeability is configured to modulate a magnetic field of the magnetic field source. The magnetic field is modulated relative to a second side of the shield opposite the first side when the permeability is changed.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: November 10, 2020
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Nathan Daniel Strachen, Nader Behdad, John H. Booske
  • Patent number: 10823786
    Abstract: A battery monitor circuit, systems and methods are disclosed. The battery monitor circuit may have a voltage sensor, a temperature sensor, a processor for receiving a monitored voltage signal from the voltage sensor, for receiving a monitored temperature signal from the temperature sensor, and for generating voltage data and temperature data based on the monitored voltage signal and the monitored temperature signal, an antenna, and a transmitter. The battery monitor circuit may be configured for wirelessly communicating the voltage data and the temperature data to a remote device, via the antenna. In an exemplary embodiment, the battery monitor circuit is located internal to the battery and wired electrically to the battery.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: November 3, 2020
    Assignee: NORTHSTAR BATTERY COMPANY, LLC
    Inventors: Don Karner, Frank Fleming, Ulf Krohn, Christer Lindkvist
  • Patent number: 10823784
    Abstract: The present disclosure provides a current detection system, method and device. The current detection system includes a management unit and a current detection device that is connected with the management unit. The current detection device includes a shunt-type current measurement unit, an open-loop Hall-type current measurement unit and an isolation power unit.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: November 3, 2020
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Zhimin Dan, Wei Zhang, Yizhen Hou, Jia Xu
  • Patent number: 10823586
    Abstract: A magnetic field sensor for sensing a movement of a target object an include a substrate having a major planar surface and three or more magnetic field sensing elements disposed upon the major planar surface of the substrate. The three or more magnetic field sensing elements can have respective major response axes, each major response axis parallel to the major planar surface of the substrate. The three or more magnetic field sensing elements comprise first and third magnetic field sensing elements and a second magnetic field sensing element disposed between the first and third magnetic field sensing elements. A first spacing between the first and second magnetic field sensing elements is less than a second spacing between the second and third magnetic field sensing elements. No other magnetic field sensing elements are disposed between the first and third magnetoresistance elements.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: November 3, 2020
    Assignee: Allegro MicroSystems, LLC
    Inventors: Jeffrey Eagen, Paul A. David
  • Patent number: 10823787
    Abstract: An apparatus embodiment includes a voltage regulator circuit that provides a regulated voltage supply signal, logic state circuitry, test control circuitry, and a supply-signal monitoring circuit. The logic state circuitry includes logic modules that are reconfigured between application controlled self-test modes in which data is shifted through the logic module and while being powered from the regulated voltage supply signal. The test control circuitry operates the controlled self-test mode by causing a predetermined set of the data to shift through the logic modules and that causes the logic state circuitry to load the voltage regulator circuit by stressing the voltage regulator circuit. The supply-signal monitoring circuit monitors a quality parameter of the regulated voltage supply signal and provides an indication of characteristics of the regulated voltage supply signal which bear on a likelihood that the voltage regulator circuit is associated with defective circuitry.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: November 3, 2020
    Assignee: NXP B.V.
    Inventor: Jan-Peter Schat
  • Patent number: 10825626
    Abstract: According to one or more aspects, a health sense system for a pulse width modulation (PWM) device associated with a magnetic coil is provided, and includes a health sense circuit, a health logic circuit, and a counter circuit. The health sense circuit measures one or more current measurements at a low voltage side of the pulse width modulation device. The health logic circuit determines a health bit indicative of a health score for the magnetic coil of the pulse width modulation device based on one or more of the current measurements. The counter circuit generates a feedback command for the pulse width modulation device based on the health bit.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: November 3, 2020
    Assignee: SAFRAN ELECTRICAL & POWER
    Inventors: James Broadwell, Christopher Kenneth Wyatt, Dean Morgan
  • Patent number: 10816594
    Abstract: An apparatus for testing a signal speed of a semiconductor package may include a plurality of sockets, one or more test boards including at least a first test board, an extension board and a test head. Each of the sockets may be configured to receive the semiconductor package. The first test board may include a plurality of mount regions on which the sockets may be mounted, and test lines extended from the mount regions toward at least one side surface of the first test board. The extension board may be vertically arranged at the side surface of the first test board. The extension board may be electrically connected to the test lines. The test head may be electrically connected to the extension board to provide the mount regions with a test signal for testing the signal speed of the semiconductor package through the extension board. Thus, it may not be required to change a structure of the socket in accordance with types of the semiconductor packages.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: October 27, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Ki-Jae Song
  • Patent number: 10816607
    Abstract: A method for estimating a SOC of a battery electrically coupled to at least one of a load or a power source includes detecting, by a voltage sensor, voltages of the battery. The method further includes determining, by a processor, an average voltage of the battery by averaging the detected voltages of the battery over a predetermined period of time. The method further includes determining, by the processor, a present operating state of the battery based on at least one of the detected voltages of the battery. The method further includes determining, by the processor, a present SOC of the battery based on the present operating state of the battery and the average voltage of the battery. The method further includes transmitting, by the processor, the present SOC of the battery to an output device for outputting the present SOC of the battery.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: October 27, 2020
    Assignee: NORTHSTAR BATTERY COMPANY, LLC
    Inventors: Don Karner, Frank Fleming, Ulf Krohn, Christer Lindkvist
  • Patent number: 10816609
    Abstract: A vehicle power system includes an inverter, outlets, and circuit breakers. The inverter supplies power to the outlets through the circuit breakers. The inverter, in response to detecting no voltage at designated amount and combination of the outlets, based on the designated amount and combination, generates a signal indicating that one or more of electrical paths to the outlets has failed or one or more of the circuit breakers is open.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: October 27, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Heinrich Enslin, Jeffery R. Grimes
  • Patent number: 10809240
    Abstract: Systems and methods for non-invasively determining a water content, a solute content, and a thickness of plant tissue are disclosed. A system includes a sensing device having a first piece and a second piece, where the first piece and the second piece are coupled together to form a clip. The system further includes a capacitive tissue sensor including a capacitor. The capacitor includes a plurality of coplanar conductive plates. The first piece and the second piece are biased in a closed position to provide a gripping force around the plant tissue such that at least a portion of the plant tissue contacts the plurality of coplanar conductive plates.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: October 20, 2020
    Assignee: THE PENN STATE RESEARCH FOUNDATION
    Inventor: Sayed Amin Afzal
  • Patent number: 10809097
    Abstract: In a detector apparatus, a first magnetosensitive unit includes first and third magnetic resistor elements arranged next to each other in a moving direction of the to-be-detected unit and electrically connected in series between a first potential and a second potential, a second magnetosensitive unit includes second and fourth magnetic resistor elements arranged next to each other in the moving direction of the to-be-detected unit and electrically connected in series between the first potential and the second potential, and as for resistances for a same magnetic field, a relation of whether or not a resistance of the third magnetic resistor element is higher than a resistance of the first magnetic resistor element is the same as a relation of whether or not a resistance of the second magnetic resistor element is higher than a resistance of the fourth magnetic resistor element.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: October 20, 2020
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Masao Matsubara, Kazuhiro Nishimura
  • Patent number: 10808570
    Abstract: In combination a blade clearance sensor and a radial flow separation wall of a gas turbine engine is provided. The blade clearance sensor is embedded in the radial flow separation wall. The radial flow separation wall comprising: a splitter hoop located radially outward from blades in a first flow path of the gas turbine engine, the splitter hoop being about concentric to a blade path of the blades; and one or more guide vane bases attached to a guide vane located radially outward from the splitter hoop in a second flow path, each of the one or more guide vane bases being securely attached to a radially outward surface of the splitter hoop, wherein the blade clearance sensor is configured to detect a blade clearance between the blades and the splitter hoop.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: October 20, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Eli Cole Warren, Kevin A. Ford
  • Patent number: 10809145
    Abstract: A sensor and system for monitoring integrity of a waterproofing system membrane. A geomembrane integrity monitoring system includes control means 18 and a plurality of sensors 20. The sensors 20 are electrically isolated from each other and in electrical communication to the control means 18. The sensors 20 have a sheet form.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: October 20, 2020
    Assignees: SENSOR SPOL. S.R.O, SENSOR (UK) LTD
    Inventor: Vladimir Nosko
  • Patent number: 10802097
    Abstract: A method of magnetic resonance imaging an object utilizing a plurality of flip angles is provided. The method includes transmitting a first preparation pulse corresponding to a first flip angle of the plurality into the object, and receiving a first MR signal from the object based at least in part on the first preparation pulse. The method further includes transmitting a second preparation pulse corresponding to a second flip angle of the plurality into the object, receiving a second MR signal from the object based at least in part on the second preparation pulse, and generating a T1 mapping of the object based at least in part on the first MR signal and the second MR signal. The second flip angle is different than the first flip angle.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: October 13, 2020
    Assignee: GE Precision Healthcare LLC
    Inventors: Glenn Scott Slavin, Anne Menini
  • Patent number: 10794938
    Abstract: A voltage detecting circuit includes a rectifying circuit, a voltage dividing circuit, and a comparing circuit. The rectifying circuit is configured to rectify a plurality of AC phase voltages to output a plurality of rectified voltages respectively. The voltage dividing circuit is configured to divide the plurality of rectified voltages respectively to output a plurality of sampling voltages. The comparing circuit is configured to compare the plurality of sampling voltages with a reference voltage respectively to provide a plurality of corresponding phase failure detecting voltages. On the condition that the AC phase voltages are unbalanced, the phase failure detecting voltage switches between a high level and a low level.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: October 6, 2020
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Yi-Kai Chou, Yi-Jan Chang
  • Patent number: 10794962
    Abstract: A system for determining a battery condition includes a temperature sensor configured to provide a temperature value associated with the battery, an impedance sensor configured to provide impedance information associated with the battery, and a controller. The controller is configured to determine a threshold impedance associated with a separator membrane of the battery based on an initial impedance of the separator membrane as measured by the impedance sensor and a battery temperature as measured by the temperature sensor, monitor, during operation of the battery, an actual impedance associated with the separator membrane of the battery based on the impedance information and the battery temperature, permit current flow to and from the battery when actual impedance is greater than the threshold impedance, and prevent current flow to and from the battery when the actual impedance is less than or equal to the threshold impedance.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 6, 2020
    Assignee: TOYOTA MOTOR EUROPE
    Inventors: Yuki Katoh, Keita Komiyama
  • Patent number: 10794951
    Abstract: An electronic element inspection equipment is provided, which is adapted to inspect an electronic element. The electronic element inspection equipment includes a first transmission track, a first rotational unit, a first image capturing device, a second image capturing device, a third image capturing device, a second rotational unit, a fourth image capturing device, and a second transmission track. The first rotational unit rotates around a first axis. When the first rotational unit moves the electronic element, the first image capturing device, the second image capturing device, and the third image capturing device capture images of the electronic element. The second rotational unit rotates around a second axis, wherein the second axis is perpendicular to the first axis. When the second rotational unit moves the electronic element, the fourth image capturing device captures one image of the electronic element.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: October 6, 2020
    Assignee: WINBOND ELECTRONICS CORP.
    Inventor: Ting-Ming Fu