Abstract: A process for producing ammonia synthesis gas from a hydrocarbon-containing feedstock in a front-end, comprising the steps of steam reforming of said feedstock, obtaining a synthesis gas comprising hydrogen, carbon monoxide and carbon dioxide; a treatment of said synthesis gas including shift of carbon monoxide and subsequent removal of carbon dioxide, wherein the shift of the synthesis gas includes high-temperature shift with an iron-based catalyst and at a temperature greater than 300° C. and the global steam-to-carbon ratio of the front end is 2.6 or less; a corresponding plant and a method for revamping a front-end of an ammonia plant are also disclosed.
Abstract: The invention relates to a method for producing a liquid compound and to the compound used to improve the results of the application of ammoniacal nitrogenated fertilizers to crops requiring same and the ammonium present in the ground, said compound being a mixture consisting mainly of 3.5 DMPP as a nitrification inhibitor, phosphorus, the main function of which is to participate in all of the processes and energetic reactions of the crop, and amino acids winch are synthesized by the plants in enzymatic reactions generated by means of the animation, where absorbed ammonium salts and organic acids are produced.
Type:
Grant
Filed:
December 24, 2013
Date of Patent:
January 8, 2019
Assignee:
TIVAR HELICOPTEROS, ASESORIAS E INVERSIONES LIMITADA
Abstract: The invention relates to a method for providing an inorganic coating to ammonium nitrate (AN) based particles, in particular to ammonium nitrate-based particles for use as a fertilizer, as well as to an inorganic coating for ammonium nitrate-based particles per se. The method comprises the steps of: a) applying a liquid concentrated mineral acid with a water content of less than 50 weight %, to the particles, in order to at least solubilize ammonium nitrate at the outer surface of the particles such that an acidified particle grasping layer is obtained, and b) applying a solid mineral alkaline in powder form to the particles of step a) in order to react with the grasping layer of the particles to coat the acidified particle surface; wherein the stoichiometric ratio of solid mineral alkaline in powder form to concentrated mineral acid is equal to or more than 5:1.
Abstract: A process for oxidative biostabilization of citrus pulp, comprising the following steps: feeding an amount of fresh citrus pulp, mixing said amount of fresh pulp with an amount of partially biostabilized pulp, setting the reaction mixture in a first open-chamber reactor (3) for oxidative biostabilization in air, causing the mixture to advance along said reactor (3) guaranteeing the homogeneity thereof, blowing in air from beneath into said first reactor (3), and transferring a partial mass of the mixture from an area close to or downstream of the outlet end (6) to an area upstream of the mixer.
Abstract: The present invention relates to a method to synthesize ammonia at moderate conditions. The present invention also relates to a new chemical reactor configuration to achieve ammonia synthesis at moderate pressures and temperatures, and methods to make membranes for use in ammonia synthesis.
Type:
Grant
Filed:
March 31, 2016
Date of Patent:
December 25, 2018
Assignee:
Colorado School of Mines
Inventors:
James Douglas Way, Sean-Thomas Bourne Lundin, Colin A. Wolden
Abstract: A process for the production of monochloramine characterized in that it provides for drawing a portion of water intended for the user and exclusively using the portion for preparing the monochloramine solution. The portion intended for the reaction of formation of monochloramine is subjected to a treatment on osmotic membrane, obtaining osmotized water. Subsequently, there is the reaction of the water with reagents in a reactor. In the reaction step, inside the reactor, the osmotized water enters from a first orifice (C) via a solenoid valve with micrometric regulation (EV1). Inside the same reactor, the base chemical products enter via the respective orifices A and B. The base chemical products enter due to the action of metering pumps (e.g. peristaltic pumps). The system is managed by PLC.
Abstract: An composition comprising: (A) a mixture comprising at least one (thio)phosphoric acid triamide according to the general formula (I) R1R2N—P(X)(NH2)2, wherein X is oxygen or sulfur; R1 is a C1 to C20 alkyl, C3 to C20 cycloalkyl, C6 to C20 aryl, or dialkylaminocarbonyl group; R2 is H, or R1 and R2 together with the nitrogen atom linking them define a 5- or 6-membered saturated or unsaturated heterocyclic radical, which optionally comprises 1 or 2 further heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, and (C) at least one amine selected from the group consisting of (C1) a polymeric polyamine, and (C2) an amine containing not more than one amino group and at least three alkoxy- or hydroxy-substituted C2 to C12 alkyl groups R21, wherein at least one of the groups R21 is different to the other groups R21, and (C3) an amine containing not more than one amino group and at least two alkoxy- or hydroxy-substituted C2 to C12 alkyl groups R22, wherein at least one of the groups R
Type:
Grant
Filed:
June 27, 2014
Date of Patent:
December 11, 2018
Assignee:
BASF SE
Inventors:
Karl-Heinrich Schneider, Claudia Klodwig, Gregor Pasda, Alexander Wissemeier, Daniella Lohe, Achim Reddig, Christian Carlos Miyagawa, Wolfram Zerulla, Steffen Tschirschwitz, Ralf-Thomas Rahn, Ansgar Gereon Altenhoff, Stephan Hüffer
Abstract: The present invention primarily relates to a preparation comprising or consisting of 40-99.9 wt.-% of lignin, preferably unmodified lignin, 0.1-50 wt.-% of minerals, preferably 0.1-30 wt.-%, 0-25 wt.-% of one or more mono- and oligomeric carbohydrates, preferably 0.1-20 wt.-%, and 0-15 wt.-% of one or more solvents, in particular water, preferably 0.1-4 wt.-%. Furthermore, the present invention relates to a fertilizer comprising or consisting of such a preparation and to the use of such a preparation as fertilizer, as ingredient for a fertilizer or for producing a fertilizer.
Abstract: Nickel based catalyst structures are described herein that include a plurality of metal oxides formed as crystalline phases within the catalyst structures. Each metal oxide of a catalyst structure includes nickel and/or aluminum, where one or more metal oxides includes a nickel aluminum oxide, and the one or more nickel aluminum oxides is greater than 50% by weight of the catalyst structure. The catalyst structures further have surface areas of at least 13 m2/g. The catalyst structures are resistant to high concentrations of sulfur and are effective in reforming operations for converting methane and other light hydrocarbons to hydrogen and one or more other components. For example, the catalyst structures are effective in coal and biomass gasification systems for the forming and cleanup of synthetic gas.
Type:
Grant
Filed:
June 7, 2016
Date of Patent:
December 4, 2018
Assignee:
Southern Research Institute
Inventors:
Amit Goyal, Santosh Gangwal, Andrew Lucero
Abstract: The invention relates to a solid inoculum carried in a superabsorbent agro-pellet with a variable volume, operating in a natural mini fermenter preloaded with an anhydrous nutritive medium, encouraging rapid regrowth of the viable micro-organisms and the continuous multiplication thereof. The liquid inoculum incorporated into the carrier at a low density of microbial cells is preferably comprised between 1/500e and 1/10e of the density recommended by the norm for a liquid inoculum of the same strain. The bioaugmentation of the microbial population is between 104 and 106 additional microbial cells. The solid inoculum according to the invention allows the preservation of the microorganisms and the handling thereof in advantageous conditions. It is not exposed to soil leaching caused by water. Said inoculum is used for the biological treatment of crops for the development and/or the preservation thereof from parasite attacks.
Abstract: A process is disclosed for creating biologically active soil or horticulture media for growing plants, wherein a fibrous carbon source such as coconut coir in a predetermined particulate form is mixed with fertilizers and other biological nutrients, inoculated with a biologically active substance such as worm castings and then aged or cured in an oxygen rich aerobic process. After which additional nutrients can be added to tailor the aged media for a specific sue. Various apparatus with which to conduct the aging process are also described. In a variation of the process used soil or horticulture media is recharged by first composting at a high temperature to remove harmful and unwanted items, its contents are evaluated, nutrients are added, and it is then aged in an aerobic process.
Abstract: A single-step method for preparing a free-flowing, non-dusting micronutrient-coated particulate solid fertiliser material, the method comprising applying a single fluid onto particulate solid fertiliser material at ambient temperature without chemical reaction or chelation, said single fluid comprising a suspension of one or more micronutrient materials in an oil.
Type:
Grant
Filed:
March 14, 2018
Date of Patent:
November 6, 2018
Assignee:
Yara UK Limited
Inventors:
Stuart Charles Ward, Victoria Anne Butler, Torstein Obrestad, Terje Tande
Abstract: This fertilizer is a mixture of organic matter from animal and plant sources, nematode controllers, carbohydrates, minerals, and mycorrhizal inoculum. It contains guano, kelp meal, neem cake, dry molasses, clay, magnesium sulfate and mycorrhizae. In one embodiment, the mixture is made of the following amounts by weight: 55% high-nitrogen bat guano; 12.5% high-phosphorous bat guano; 12.5% kelp meal; 10% neem cake; and 2.5% each of dry molasses, montmorillonite clay, magnesium sulfate, and mycorrhizae of the Glomus genus. Versions of the fertilizer directed to specific plant species may contain additional ingredients, such as indole-3-butyric acid.
Abstract: A method for creating treated biochar is provided that includes infusing a liquid additive into the pores of biochar, such as a fertilizer solution or other additive beneficial to plant growth. The method further includes the removal of materials and/or other additives from the pores of biochar. The present invention further provides biochar having pores filled with a liquid solution containing an additive, where the additive may include, but not be limited to, an additive beneficial to plant growth.
Type:
Grant
Filed:
December 28, 2016
Date of Patent:
November 6, 2018
Assignee:
Cool Planet Energy Systems, Inc.
Inventors:
Ranko Panayotov Bontchev, Han Suk Kim, Mark L. Jarand, Richard Wilson Belcher, Michael C. Cheiky, Ronald A. Sills
Abstract: Disclosed herein is a method for fertigation comprising: (a) providing an acidic mixture of water and a fertilizer dissolving agent; (b) contacting the acidic mixture with a fertilizer composition in fertigation equipment to dissolve the fertilizer composition and to form a fertigation composition; and (c) contacting the fertigation composition with soil. Also disclosed are a fertigation composition and a fertilizer system.
Abstract: Treated biochar and methods for treating biochar are provided. The method for treating the biochar includes forcing, assisting or accelerating the movement of an infiltrant into the pores of the biochar, whereby the treatment affects properties of the biochar that provide for a more reliable and predictable biochar for use in various applications, including, but not limited to, agricultural applications.
Type:
Grant
Filed:
March 30, 2017
Date of Patent:
October 23, 2018
Assignee:
Cool Planet Energy Systems, Inc.
Inventors:
Ranko Panayotov Bontchev, Han Suk Kim, Richard Wilson Belcher, Mark L. Jarand
Abstract: The invention concerns a method for incorporating micronutrients in an outer shell of urea-based particles, characterized in that it comprises the steps of a) applying a liquid concentrated mineral acid with a water content of at most 25 weight % to urea-based particles having a water content of at most 2 weight %, in order to at least form a double salt layer at the outer surface of the urea-based particles such that an acidified particle grasping layer is obtained, and subsequently b) applying a solid mineral base in powder form to the urea-based particles of step a) in order to react with the grasping layer of the urea-based particles; wherein the mineral acid or the solid mineral base are the source of any one of the micronutrients and wherein the liquid concentrated mineral acid and the solid mineral base in powder form are applied in a non-equimolar ratio between 0.1 and 1 mol/mol mineral acid/mineral base.
Abstract: A fertilizer composition comprises an inorganic fertilizer particle, a first layer disposed on the inorganic fertilizer particle, and a second layer disposed on the first layer wherein the first layer comprises biomaterial and the second layer comprises phosphoric acid, ammonium polyphosphate, or a combination comprising at least one of the foregoing. A method of making the fertilizer composition is also described herein.
Abstract: A method and process system of comprehensively utilizing high-temperature slag balls exiting a rotary kiln in a kiln process for producing phosphoric acid, comprising a rotary kiln, a cooling device and a dryer for composite green pellets in a kiln process for producing phosphoric acid, wherein the cooling device comprises at least two cooling stages; the high-temperature slag balls are first conveyed to the cooling device, then the cooling device carries slag balls successively to multiple cooling stages by the movement of a trolley, each cooling stage introduces cold air for cooling, a part of the hot air after cooling is sent to the cavity of the rotary kiln, and the other part thereof is sent to the dryer for composite green pellets in the kiln process for producing phosphoric acid for drying.
Type:
Grant
Filed:
December 3, 2015
Date of Patent:
October 16, 2018
Assignee:
SICHUAN KO CHANG TECHNOLOGY CO., LTD.
Inventors:
Yonghe Hou, Jiabin Wang, Shenghui Lei, Jing Li