Patents Examined by Wednel Cadeau
  • Patent number: 10430440
    Abstract: A data property recognition apparatus, includes a storage unit; a model data acquisition processor acquiring a plurality of model sets of data entries, each data entry individually representing an identified property common to the model set and being of a data type common to the model set; a feature vector generation processor receiving an input set of data entries, recognizing a data type common to the input set of data entries from among a plurality of supported data types, selecting a set of statistical characteristics representing the input set of data entries in dependence upon the recognised data type, generating a value of each of the selected set of statistical characteristics from the input set of data entries, and outputting a feature vector composed of the generated values of statistical characteristics.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: October 1, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Alejandro Llaves, Manuel Peña Muñoz, Victor De La Torre
  • Patent number: 10426053
    Abstract: A configurable radio frequency system. The system includes: a plurality of radio frequency cells connected in a cascade. Each of the radio frequency cells includes an input switch connected to an input of the radio frequency system, an output switch connected to an output of the radio frequency system, and a plurality of elements, each of the elements being connected between the input switch and the output switch. The input switch and the output switch are configured, depending on their respective settings, to cause a radio frequency signal path from an input of the cell to an output of the cell to include one of the elements. The plurality of elements in each cell includes a band pass filter, an attenuator, a through path, an amplifier, and a mixer.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: September 24, 2019
    Assignee: Raytheon Company
    Inventors: William K. Mcgehee, John Hudlow, Michael R. Patrizi, Tuan M. Tong
  • Patent number: 10425122
    Abstract: A System-on-a-Chip (SoC) for receiving telemetry messages over a radio-frequency (RF) channel is provided. The SoC comprises at least one RF module; at least one module for conversion of the signal from an analog form to a digital form; at least one input signal digital processing unit for filtering the signal from the RF module; and at least one memory unit. The SoC also comprises at least one processor for executing time shifting and frequency shifting of the signal. The processor is configured to process each time- and frequency-shifted signal by consecutive Fourier transforms, such that a first time element of each next transform is placed immediately after a last element of a previous transform. The processor is also configured to receive the signal, which signal was subjected to a carrier frequency change during transmission thereof, the signal having transmission frequencies that are within at least two processed spectrum sections.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: September 24, 2019
    Assignee: WAVIOT INTEGRATED SYSTEMS, LLC
    Inventors: Andrey Olegovich Orlov, Vasiliy Vasilievich Anisimov, Alexey Andreevich Danilov, Andrei Viktorovich Bakumenko, Danylo Sergeevich Batura
  • Patent number: 10419063
    Abstract: A method to receive telemetry messages over an RF channel, the method implemented by a system on a chip, in which a signal is received from the output of an input RF module, the received signal is offset in time and frequency wherein the signal, at first, is offset in time so that the offset magnitudes uniformly fill the length of one data bit, then, the signal is offset in frequency so that the offset magnitudes uniformly fill the space between the Fourier transform subcarriers, with the frequency offsets being independent of the time offsets; each signal processed at the preceding step is subjected to sequential Fourier transforms, with the first time element of each next transform immediately following the last element of the preceding transform; all messages are demodulated independently. The technical result consists in that messages can be received over multiple channels at multiple rates.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: September 17, 2019
    Assignee: WAVIOT INTEGRATED SYSTEMS, LLC
    Inventors: Andrey Olegovich Orlov, Vasiliy Vasilievich Anisimov, Alexey Andreevich Danilov, Andrey Yurievich Puzanov, Andrei Viktorovich Bakumenko, Danylo Sergeevich Batura
  • Patent number: 10411914
    Abstract: What is disclosed is a method for wireless communication comprising receiving a wireless communication via a receiver of the mobile communication device, deriving a demodulation reference signal from a first plurality of symbols of the wireless communication; creating a channel estimation matrix using the demodulation reference signal; inverting the channel estimation matrix to obtain a channel pseudo-inverse matrix; deriving a tracking reference signal from a second plurality of symbols of the wireless communication; calculating a phase shift for one or more additional symbols based on the tracking reference signal; determining a corrected channel pseudo-inverse matrix for the one or more additional symbols by adjusting the channel pseudo-inverse matrix according to the calculated phase shift; and controlling the receiver to accomplish data detection using the corrected channel pseudo-inverse matrix on one or more orthogonal frequency division multiplexing subcarriers.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 10, 2019
    Assignee: Intel IP Corporation
    Inventors: Denis Gudovskiy, Karthik Rajagopalan, Rizwan Ghaffar, Chuxiang Li
  • Patent number: 10397030
    Abstract: A method of recovering information encoded by a modulated sinusoidal waveform having first, second, third and fourth data notches at respective phase angles, where a power of the modulated sinusoidal waveform is reduced relative to a power of an unmodulated sinusoidal waveform within selected ones of the first, second, third and fourth data notches so as to encode input digital data. The method includes receiving the modulated sinusoidal waveform and generating digital values representing the modulated sinusoidal waveform. A digital representation of the unmodulated sinusoidal waveform is subtracted from the digital values in order to generate a received digital data sequence, which includes digital data notch values representative of the amplitude of the modulated sinusoidal waveform within the first, second, third and fourth data notches. The input digital data is then estimated based upon the digital data notch values.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: August 27, 2019
    Inventor: Torsten Schultze
  • Patent number: 10382236
    Abstract: The present invention is directed to data communication. In a specific embodiment, a known data segment is received through a data communication link. The received data is equalized by an equalizer using an adjustable equalization parameter. The output of the equalizer is sampled, and a waveform is obtained by sweeping one or more sampler parameters. The waveform is evaluated by comparing it to the known data segment. Based on the quality of the waveform, equalizer parameter is determined. There are other embodiments as well.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: August 13, 2019
    Assignee: INPHI CORPORATION
    Inventors: Richard Ward, Parmanand Mishra
  • Patent number: 10382244
    Abstract: A method and apparatus are provided. The method includes receiving a reference signal from a transceiver, estimating a time offset (TO) of the reference signal in the frequency domain based on an accumulation of subcarriers before cross-correlation, providing a TO compensated signal of the reference signal based on the estimated TO in the frequency domain, transforming the TO compensated signal into the time domain, and estimating a frequency offset (FO) based on the time domain TO compensated signal.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: August 13, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Amir Dezfooliyan, Vignesh Sethuraman, Hamed Maleki, Linbo Li, Kee-Bong Song
  • Patent number: 10367550
    Abstract: The present disclosure discloses that a device uses precoding to transmit independent data streams to existing users and additional independent data streams to one or more new users simultaneously. During a first transmission of a first one or more data streams that are precoded using a first precoding matrix, the device determines to transmit a second one or more data streams in a second transmission. Before the first transmission is complete, the device calculates a combined precoding matrix for precoding the first one or more data streams and the second one or more data streams. The device transmits the first one or more data streams in the first transmission and the second one or more data streams in the second transmission simultaneously using the combined precoding matrix.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: July 30, 2019
    Assignee: Cisco Technology, Inc.
    Inventors: David S. Kloper, Mithat C. Dogan, Matthew A. Silverman, Brian D. Hart, Jiunming Huang
  • Patent number: 10367554
    Abstract: A method implemented in a wireless network element (NE), comprising obtaining, via a processor of the wireless NE, a plurality of encoded signals associated with a plurality of downstream (DS) channels in a wireless communication network, wherein the plurality of DS channels form a plurality of DS multiple-input and multiple-output (MIMO) groups, performing, via the processor, MIMO pre-coding on the plurality of encoded signals according to the plurality of DS MIMO groups to produce MIMO pre-coder output signals of the plurality of DS MIMO groups, performing, via the processor, a crosstalk pre-coding across the MIMO groups using a crosstalk pre-coding matrix on the MIMO pre-coder output signals of the plurality of DS MIMO groups to produce a plurality of output signals, with the crosstalk pre-coding matrix computed according to a first DS channel matrix and a DS MIMO channel matrix, wherein the first DS channel matrix comprises first diagonal entries representing first direct channel estimates of the pluralit
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: July 30, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventors: Amir H. Fazlollahi, Xiang Wang
  • Patent number: 10355902
    Abstract: The present disclosure relates to a network information analysis in a wireless communication system, and an analysis method comprises the steps of: receiving information on channel quality measured by a terminal; and outputting information on whether a carrier aggregation (CA) coverage mismatch occurs at a location where the channel quality has been measured, which is determined on the basis of the information on the channel quality. Further, the present disclosure comprises other embodiments as well as the above-descried embodiment.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: July 16, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kiyoung Han, Young-Sung Kho, Sangheon Lee, Yoonil Choi
  • Patent number: 10348387
    Abstract: Embodiments of the present application disclose a spreading method, a spreading control method, and apparatuses thereof. The spreading method comprises: determining a first combined spreading code to be used at least according to first information associated with spreading by using combined spreading codes, the first combined spreading code comprising N spreading codes, and N being an integer not less than 2; and spreading N data units by using the first combined spreading code, wherein the N data units comprise at least one first unit and at least one second unit, the at least one first unit comprises data to be sent, and the at least one second unit is configured to recover the at least one first unit. The methods and apparatuses of the embodiments of the present application can effectively solve the problem of an insufficient number of orthogonal spreading codes by using combined spreading codes.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: July 9, 2019
    Assignee: BEIJING ZHIGU RUI TUO TECH CO., LTD.
    Inventors: Fanggang Wang, Guoyu Ma
  • Patent number: 10348364
    Abstract: In a system, known digital representations are generated, and test analog signals are generated using the known digital representations. The test analog signals are transmitted using a transmitter of a transmission system. The test analog signals are received using a receiver of the transmission system and used to generate test received digital representations. The test received digital representations are cross-correlated with the known digital representations to generate a mixing matrix. The mixing matrix is inverted to generate a de-mixing matrix, which is applied to subsequent digital data to be encoded onto a signal and transmitted by the transmitter to generate pre-compensated digital data.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: July 9, 2019
    Assignee: Roshmere, Inc.
    Inventors: Eduardo Temprana Giraldo, Nikola Alic
  • Patent number: 10340962
    Abstract: Under one aspect, a method for reducing interference in a received signal can include splitting a received signal into a first portion and a second portion, the received signal comprising a desired signal and an interference signal that spectrally overlaps the desired signal. The method also can include estimating an amplitude A(t) of the first portion as a function of time. The method also can include suppressing at least a portion of the interference signal in the estimated amplitude A(t) to generate an interference suppressed amplitude A?(t). The method also can include delaying the second portion by an amount of time corresponding to the estimation and suppression. The method also can include multiplying the interference suppressed amplitude A?(t) by the delayed second portion to obtain an output having reduced contribution from the interference signal.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: July 2, 2019
    Assignee: The Aerospace Corporation
    Inventors: Alexander C. Utter, Philip Dafesh, Phillip Brian Hess
  • Patent number: 10305676
    Abstract: An apparatus includes a radio frequency (RF) receiver, which includes a digital signal arrival (DSA) detector to detect arrival of a transmitted signal. The DSA detector includes a signal correlator and at least one of (a) an absolute received signal strength indication (RSSI) detector; (b) a relative RSSI detector; and (c) a frequency offset detector). The RF receiver further includes a demodulator coupled to the DSA detector to demodulate a received signal and to provide a demodulated signal, and a synchronization word detector (SWD) coupled to the demodulator to receive the demodulated signal.
    Type: Grant
    Filed: May 29, 2016
    Date of Patent: May 28, 2019
    Assignee: Silicon Laboratories Inc.
    Inventors: Hendricus de Ruijter, Ping Xiong, Wentao Li, Yan Zhou
  • Patent number: 10298275
    Abstract: An outphasing transmitter includes a decomposition block, first and second power amplifiers, and a dual-polarized antenna in a phased array antenna panel. The decomposition block decomposes a composite input signal into first and second decomposed RF signals. The first and second decomposed RF signals are coupled to the first and second power amplifiers. The first power amplifier is coupled to a vertically-polarized probe, and the second power amplifier is coupled to a horizontally-polarized probe. A plurality of dual-polarized antennas may be utilized. The first power amplifier is coupled to each vertically-polarized probe; while the second power amplifier is coupled to each horizontally-polarized probe.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: May 21, 2019
    Assignee: Movandi Corporation
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Maryam Rofougaran, Farid Shirinfar
  • Patent number: 10291283
    Abstract: Embodiments of the invention include a tunable radio frequency (RF) communication module that includes a transmitting component having at least one tunable component and a receiving component having at least one tunable component. The tunable RF communication module includes at least one piezoelectric switching device coupled to at least one of the transmitting and receiving components. The at least one piezoelectric switching device is formed within an organic substrate having organic material and is designed to tune at least one tunable component of the tunable RF communication module.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: May 14, 2019
    Assignee: Intel Corporation
    Inventors: Telesphor Kamgaing, Feras Eid, Adel A. Elsherbini, Georgios C. Dogiamis, Vijay K. Nair, Johanna M. Swan, Valluri R. Rao
  • Patent number: 10284275
    Abstract: This disclosure describes systems, methods, and devices related to multiple-input and multiple-output (MIMO) beamforming. A device may determine one or more short sector sweep frames associated with one or more antennas of the device. The device may cause to set one or more fields of at least one of the one or more short sector sweep frames to indicate an MIMO communication with one or more first devices. The device may identify one or more response frames from at least one of the one or more first devices based at least in part on the one or more short sector sweep frames.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 7, 2019
    Assignee: Intel IP Corporation
    Inventor: Carlos Cordeiro
  • Patent number: 10284276
    Abstract: Embodiments of the invention provide a decoder (10) for decoding a signal received through a transmission channel in a communication system, the signal carrying information symbols selected from a given set of values and being associated with a signal vector, the transmission channel being represented by a channel matrix. The decoder comprises: a sub-block division unit (12) configured to divide the received signal vector into a set of sub-vectors in correspondence with a division of a matrix related to said channel matrix; at least one weighting coefficient calculation unit (14) configured to calculate a sub-block weighting coefficient for each sub-vector, at least one symbol estimation unit (11) for recursively determining estimated symbols representative of the transmitted symbols carried by the data signal from information stored in a stack.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: May 7, 2019
    Assignee: INSTITUT MINES-TELECOM
    Inventors: Mohamed-Achraf Khsiba, Ghaya Rekaya Ben-Othman, Asma Mejri
  • Patent number: 10277380
    Abstract: A configurable transceiver includes a first transmitter, an edge rate controller, a second transmitter, a subtractor, a bandwidth controller and a main controller. The first transmitter is configured to generate a first signal for transmission via a transmission link. The second transmitter is configured to generate a replica signal associated with the first signal. The edge rate controller is communicatively coupled to the first and/or second transmitter and is configured to control an edge rate parameter of the first and/or second signal. The subtractor is configured to subtract the replica signal from a signal received via the transmission link. The bandwidth controller is configured to control a bandwidth parameter of a difference signal received from the output of the subtractor. The main controller chooses edge rate and bandwidth control words per desired link rates. It can also automatically find the maximum possible link speed.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: April 30, 2019
    Assignee: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Caglar Yilmazer, Arda K. Bafra, Umut Yilmazer