Patents Examined by Yelena G. Gakh
  • Patent number: 8808628
    Abstract: A device for measuring calories of food items includes a food item holding unit on which an inspection-target food item including a plurality of food materials is placed, a light source for radiating near-infrared rays at a specific wavelength region to the food item, and a light reception unit that receives light emitted from the light source and then reflected from the food item. The light receiving device receives light reflected from the food item when the near-infrared rays at the specific wavelength are radiated to the food item. A control unit calculates calories of the food item in accordance with measurement values of absorbances of the near-infrared rays at the specific wavelength region which are received by the light reception unit.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: August 19, 2014
    Assignee: Joy World Pacific Co., Ltd.
    Inventors: Kenkoh Hanamatsu, Hiroyuki Ono, Hideo Odagiri, Takahiro Sawa, Katsuyuki Miura
  • Patent number: 8809066
    Abstract: An analyzing apparatus contains an image detection unit and an analysis unit. The image detection unit contains a view field area that covers at least a reaction area and a background area in a test piece. The reaction area exhibits a reaction color when exposed to a test substance in a specimen. The analysis unit detects the test substance based on the reaction color and determines, during detection of the test substance, whether a state of the background area falls within an acceptable range set for the test substance.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: August 19, 2014
    Assignee: Ushio Denki Kabushiki Kaisha
    Inventor: Shigeki Matsumoto
  • Patent number: 8802444
    Abstract: A “real time” method for detecting chemical agents generally and particularly electrophilic and nucleophilic species by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species. By bonding or otherwise attaching these precursor molecules to a surface or substrate they can be used in numerous applications.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 12, 2014
    Assignee: Sandia Corporation
    Inventors: James R. McElhanon, Timothy J. Shepodd
  • Patent number: 8796033
    Abstract: A method for analyzing a minute quantity of a material included in a different material is performed in short extraction treatment without taking a long time and the minute content is rapidly analyzed. The method of analyzing a minute content includes mounting on a sample table a sample piece of a material having a minute content of a different material to be analyzed; dropping onto the sample table a solvent for extracting the minute content from the sample piece, so that the solvent is disposed between the sample table and the sample piece; maintaining at room temperature the solvent between the sample table and the sample piece, and, with the solvent maintained between the sample table and the sample piece, extracting the material of the minute content from the sample piece; and analyzing the content extracted from the sample piece.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: August 5, 2014
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Jiro Naka, Hiroshi Kurokawa, Junji Kobayashi, Satoru Toyama, Noriko Hirano, Eiji Hara
  • Patent number: 8778695
    Abstract: Methods and apparatuses for analyzing proteins and other biological materials and xenobiotics within a sample. A specimen is generated, which may include an energy absorbent matrix. The specimen is struck with laser beams such that the specimen releases proteins. The atomic mass of the released proteins over a range of atomic masses is measured. An atomic mass window of interest within the range of atomic masses is analyzed to determine the spatial arrangement of specific proteins within the sample, and those specific proteins are identified as a function of the spatial arrangement. By analyzing the proteins, one may monitor and classify disease within a sample.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: July 15, 2014
    Assignee: Vanderbilt University
    Inventor: Richard Caprioli
  • Patent number: 8778694
    Abstract: Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio Phi/Plo and the volume ratio V1/V2, with following detection of the impurities using commonly-available detection methods.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: July 15, 2014
    Assignee: Uchicago Argonne, LLC
    Inventors: Shabbir Ahmed, Sheldon H. D. Lee, Romesh Kumar, Dionissios D. Papadias
  • Patent number: 8778691
    Abstract: A method for measuring bromate ion is provided that provides high-sensitivity measurement results more simply and more quickly than conventional bromate ion measurement methods. A fluorescent substance that is quenched by coexistence with bromate ions is added to a sample 130 and the fluorescence intensity of the fluorescent substance after quenching is measured, the measured fluorescence intensity being subtracted from the fluorescence intensity of a standard sample containing no bromate ions to calculated the fluorescence intensity difference. The bromate ion concentration is calculated from the calculated fluorescence intensity difference, using a pre-determined calibration line between the fluorescence intensity difference and the bromate ion concentration.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 15, 2014
    Assignees: Meta Water Co., Ltd., Ibaraki University
    Inventors: Shukuro Igarashi, Jun Kato, Yoshiharu Tanaka
  • Patent number: 8778271
    Abstract: Sensors for the detection of free radicals and free radical forming compounds including, for example, peroxides, as well as energetic radiation, UV light, plasma or heat each such sensor including a functional component are described herein. In addition, this disclosure includes methods for making such sensors and methods for using sensors including a functional component and devices incorporating such sensors.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: July 15, 2014
    Assignee: Triton Systems Inc.
    Inventors: John Lock, Edward Geraghty, Lawino Kagumba, Norm Rice, Keith Higginson, Ken Mahmud, Arthur Gavrin
  • Patent number: 8772044
    Abstract: The present invention provides a method for obtaining structural information conveniently and rapidly by generating a negative ion without adding an acidic substance to matrix, thereby improving sensitivity of measurement by a mass spectrometer, and by generating structural specific ions with high reproducibility, and a method for screening disease marker and a method for analyzing a sample containing a biomolecule. A method for mass spectrometry of a sugar chain comprising the steps of: preparing a sample containing a sugar chain; labeling the sugar chain with a labeling compound, to obtain a labeled sugar chain; and subjecting the labeled sugar chain to measurement of negative ions by using a MALDI mass spectrometer, thereby conducting analysis of the sugar chain.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: July 8, 2014
    Assignees: The Noguchi Institute, Shimadzu Corporation
    Inventors: Junko Amano, Koichi Tanaka
  • Patent number: 8765453
    Abstract: Provided is a system and method for staining of one or more samples, including providing one or more self-contained sample processing receptacles, each of the one or more self-contained sample processing receptacles configured to be inserted into an auto-staining instrument; and enabling one of one or more staining procedures appropriate for the one or more samples as a function of a choice of self-contained sample processing receptacle, each of the one or more self-contained sample processing receptacles configured to process each inserted sample of the one or more samples within the self-contained sample processing receptacle.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: July 1, 2014
    Assignee: SYFR, Inc.
    Inventors: Shazi S Iqbal, Steven M Montgomery, Ronald Chang, Gregory E Mote, Douglas B Dority, Jeffrey S Ross
  • Patent number: 8748190
    Abstract: The present invention provides methods for detecting urushiol-bearing plants such as poison ivy, poison oak, and poison sumac. Accordingly, one aspect of the invention is a method of detecting a urushiol-bearing plant, the method comprising: dispensing a urushiol marking composition on a surface of the urushiol-bearing plant; then detecting a visual change on the urushiol-bearing plant caused by the reaction of the urushiol marking composition with the urushiol borne by the urushiol-bearing plant.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: June 10, 2014
    Inventor: Alisha Hansen
  • Patent number: 8709823
    Abstract: A method for performing time resolved homogeneous assays using a long-lifetime luminescent dye as a donor. A reaction well containing a sample portion, donor reagent, and acceptor reagent and a matrix well containing a sample portion and donor reagent are excited and the resulting emission from each is measured at a single wavelength associated with the acceptor. The measurement obtained from the matrix well is used to provide a correction for the measurement obtained from the reaction well. The sample may be a biological fluid such as an oral fluid.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: April 29, 2014
    Assignee: Biophor Diagnostics, Inc.
    Inventor: Todd M. Corneillie
  • Patent number: 8709358
    Abstract: Devices, systems, and methods for separating an analyte from a mixture, and devices, systems, and methods for measuring an amount of an analyte are disclosed. The devices, systems, and methods may be used to separate glycated hemoglobin from other blood components and to measure the amount of the glycated hemoglobin.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: April 29, 2014
    Assignee: MaxAffinity LLC
    Inventor: Xiao-Chuan Liu
  • Patent number: 8691590
    Abstract: A hydrogen storage material analyzer along with its analysis and activation methods, the hydrogen storage material analyzer including a H2 absorption-desorption cycling tester, a temperature-programmed desorption spectrometer, a specimen holder and a temperature-controlled furnace.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: April 8, 2014
    Assignee: Yuan Ze University
    Inventors: Chia-Chieh Shen, Tsong-Pyng Perng, Hsueh-Chih Li
  • Patent number: 8685219
    Abstract: An apparatus for capillary zone electrophoresis includes a polyelectrolyte multilayer positioned in a capillary tube for analytical separations of macromolecules. The capillary comprises a passage defined by passage walls comprising fused silica and the polyelectrolyte multilayer positioned within the passage. The polyelectrolyte multilayer comprises layers with alternating charge. The apparatus includes a power supply having a positive electrode and a negative electrode for generating an electric field therebetween and a sensor positioned adjacent the passage for sensing macromolecules.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: April 1, 2014
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Joseph B. Schlenoff, Timothy W. Graul
  • Patent number: 8685744
    Abstract: A mobile water analyzing system for determining an analyte in a water sample includes a basic unit and a test element configured to be inserted into the basic unit. The test element includes a sample line with an inlet opening configured to receive the water sample, a measuring section forming a measuring track and configured to allow the determination of an analyte, a pump opening, and a key reagent disposed inside the sample line. The basic unit includes a test element receptacle configured to hold the inserted test element, an analyzer with an analyzer measuring track formed by the measuring section, and a pump actuator cooperatively connected with the pump opening.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: April 1, 2014
    Assignee: Hach Lange GmbH
    Inventors: Ulrich Lundgreen, Aria Farjam, Rolf Uthemann, Andreas Mitreiter, Isabel Huenig, Markus Lenhard, Rainer Froemel, Hans-Joachim Kumpch
  • Patent number: 8685743
    Abstract: A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: April 1, 2014
    Assignee: The Regents of the University of California
    Inventors: Xiang Zhang, Jonathan A. Ellman, Fanqing Frank Chen, Kai-Hang Su, Qi-Huo Wei, Cheng Sun
  • Patent number: 8673074
    Abstract: A method of growing planar non-polar m-plane or semi-polar III-Nitride material, such as an m-plane gallium nitride (GaN) epitaxial layer, wherein the III-Nitride material is grown on a suitable substrate, such as an m-plane sapphire substrate, using hydride vapor phase epitaxy (HVPE). The method includes in-situ pretreatment of the substrate at elevated temperatures in an atmosphere of ammonia and argon, growing an intermediate layer such as an aluminum nitride (AlN) or aluminum-gallium nitride (AlGaN) on the annealed substrate, and growing the non-polar m-plane III-Nitride epitaxial layer on the intermediate layer using HVPE.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: March 18, 2014
    Assignee: Ostendo Technologies, Inc.
    Inventors: Alexander Usikov, Alexander Syrkin, Robert G. W. Brown, Hussein S. El-Ghoroury, Philippe Spiberg, Vladimir Ivantsov, Oleg Kovalenkov, Lisa Shapovalova
  • Patent number: 8652771
    Abstract: The present invention relates in general to the discovery of urinary succinate as a novel biomarker of kidney disease. More specifically, the invention provides for the measurement of succinate in urine samples that has great potential for the easy and early diagnosis of kidney damage and would allow early prediction of kidney disease and therapeutic intervention.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: February 18, 2014
    Assignee: University of Souther California
    Inventor: Janos Peti-Peterdi
  • Patent number: 8647880
    Abstract: A method of detection of amino acid sequences and/or identification of proteins and peptides is based on derivatization of peptides or proteins using compounds comprising two or more sulfonyl groups, and subsequent analysis of the derivatized analytes using a mass spectrometer in its negative mode of operation.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: February 11, 2014
    Assignee: Rudjer Bosckovic Institute
    Inventors: Mario Cindric, Sandra Kraljevic Pavelic, Anita Horvatic, Ivana Dodig