Patents Examined by Youngsul Jeong
  • Patent number: 11535578
    Abstract: This disclosure provides improved processes for converting aromatic hydrocarbons, such as benzene/toluene, alkylation, transalkylation, or isomerization. In an embodiment, a process comprises utilizing a passivated reactor to reduce deactivation of a molecular sieve catalyst. Additional measures such as the use of an auxiliary catalyst and/or an elevated reactor pressure may be used to further reduce deactivation of the molecular sieve catalyst.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: December 27, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Seth M. Washburn, Hsu Chiang, Umar Aslam, Wenyih Frank Lai, Doron Levin, Tan-Jen Chen
  • Patent number: 11529608
    Abstract: A carbon dioxide adsorbent including silica gel and an amine compound carried by the silica gel. The silica gel has a spherical shape, a particle size ranging from 1 mm to 5 mm inclusive, an average pore diameter ranging from 10 nm to 100 nm inclusive, a pore volume ranging from 0.1 cm3/g to 1.3 cm3/g inclusive, and a waterproof property N that is defined by an expression (1) and that is not lower than 45%, N=(W/W0)×100??(1) where N is the waterproof property in percentage (%) of the silica gel, W0 is a total number of particles of the silica gel immersed in water, W is a number of particles of the silica gel not subjected to breakage out of W0.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: December 20, 2022
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Takeshi Okumura, Masahiro Negami, Katsuhiro Yoshizawa, Akihito Kawano, Yoshimichi Nomura, Hidekazu Iwasaki, Shohei Nishibe
  • Patent number: 11524927
    Abstract: Monoethylene glycol (MEG) may be reclaimed by a process that includes contacting a MEG-water-salt stream with a heat transfer fluid and then flash separating the MEG and water in the flash separator vessel where the pressure is higher than 0.3 barA (0.03 MPa), the temperature is in the range of above 120° C. to about 250° C., and the residence time of the MEG and water ranges from about 1 second to about 10 minutes, and then removing the MEG and water in an overhead of the flash separator vessel and removing the salt from the flash separator vessel. In some embodiments it is expected that the temperature of the process may range from above 165° C. to about 250° C. and/or that the pressure may be atmospheric.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: December 13, 2022
    Assignee: CAMERON INTERNATIONAL CORPORATION
    Inventors: Christopher Stephen King, Brian Edward Messenger, Harihara V. Nemmara, Z. Frank Zheng, Shihui Zhou
  • Patent number: 11517878
    Abstract: An adsorbate-selective metal organic framework includes a transition metal; and a plurality of organic molecules coordinated to the transition metal so as to preserve open coordination sites for selectively adsorbing molecules that have low-lying ?* orbitals. The transition metal has a lowest energy spin state in the presence of the selectively adsorbed molecules that are strongly bonding to the transition metal through ?-donating interactions which is different than the lowest energy spin state in the absence of these adsorbed molecules. The transition metal has also a lowest energy spin state in the presence of non-selected molecules that are weakly bonding to the transition metal through ?- and/or ?-accepting and/or donating interactions.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: December 6, 2022
    Assignee: The Regents of the University of California
    Inventors: Jeffrey R. Long, Benjamin K. Keitz, Douglas Reed
  • Patent number: 11517877
    Abstract: Disclosed are air-stable small-molecule adsorbents trimeric [Cu—Br]3 and [Cu—H]3 that undergo a reversible solid-state molecular rearrangements to [Cu—Br.(alkene)]2 and [Cu—H.(alkene)]2 dimers. The reversible solid-state rearrangement allows one to break adsorbent design trade-offs and achieve low heat of adsorption while retaining high selectivity and uptake.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: December 6, 2022
    Assignees: Board of Regents, The University of Texas System, University of Canterbury
    Inventors: Rasika Dias, Matthew Greig Cowan, Devaborniny Parasar
  • Patent number: 11511214
    Abstract: A method for cleaning fuel oil for a diesel engine includes providing a fuel oil to be cleaned, supplying said fuel oil to be cleaned to a centrifugal separator, and cleaning said fuel oil in the centrifugal separator to provide a clean oil phase. The method further includes measuring the viscosity of the fuel oil to be cleaned before cleaning in said centrifugal separator or the viscosity of the clean oil phase, and regulating the temperature of the fuel oil to be cleaned based on said measured viscosity.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: November 29, 2022
    Assignee: ALFA LAVAL CORPORATE AB
    Inventor: Mitul Sawjani
  • Patent number: 11504668
    Abstract: Facility and method for membrane permeation treatment of a feed gas stream containing at least methane and carbon dioxide including first, second, and third membrane separation units each including at least one membrane that is more permeable to carbon dioxide than to methane, wherein a permeate from the first membrane separation unit is fed to the third membrane separation unit and a retentate from the first membrane separation unit is fed to the second membrane separation unit. A compressor B adjusts the third-permeate suctioning pressure as a function of the feed gas stream pressure and the second retentate methane concentration.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: November 22, 2022
    Assignee: L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Francois Barraud, Jean-Marc Chareyre
  • Patent number: 11498019
    Abstract: A multi-phase separation apparatus shapes a fluid stream in a flow shaping line having a plurality of descending, vertically stacked curvilinear loops disposed along a fluid vessel vertical axis, stratifying the fluid stream into a primarily liquid component and a primarily gaseous component. At a point below plurality of loops, the primarily gaseous component is bled off from the primary liquid component. The primarily gaseous component may be introduced into a vortex cluster to further separate liquid entrained in the gaseous component, which separated liquid may then be combined back with the primarily liquid component. The vertically stacked curvilinear loops may be disposed within a fluid vessel to protect and insulate the loops or may be disposed about the exterior of the vessel. The vortex cluster system may be positioned within the vessel and may employ vortex tubes deployed along either a linear flow channel or a spiral flow channel.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: November 15, 2022
    Assignee: HAVEN TECHNOLOGY SOLUTIONS LLC
    Inventors: David James Elms, Gregory Allen Hudspeth
  • Patent number: 11492419
    Abstract: A clathrate of 1-methylcyclopropene with ?-cyclodextrin, obtained as a solid particulate product, is modified by comminuting, classifying, or both to obtain a modified particulate. When subjected to identical atmospheric disgorgement conditions of humidity and temperature, identical masses of the modified and unmodified particulates exhibit different rates of 1-methylcyclopropene disgorgement. Specifically, we have found that a smaller mean particle size is inversely related to a greater rate of 1-methylcyclopropene release.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: November 8, 2022
    Assignee: Verdant Technologies, LLC
    Inventors: Willard E. Wood, Joseph Frank Sarageno, Jr., Joseph S. Keute, Amanda Lundgren
  • Patent number: 11492554
    Abstract: There is provided a method for producing a recycled material, whereby a recycled material can be efficiently obtained from a tire. The method for producing a recycled material according to the present invention includes a step of subjecting a tire to a gasification treatment to generate a gas containing a C1 gas from the tire, and a step of obtaining a recycled material containing at least one species selected from the group consisting of isoprene, butadiene, a butanediol compound, a butanol compound, a butenal compound, succinic acid, and polymers of these compounds by using the gas containing the C1 gas.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 8, 2022
    Assignee: SEKISUI CHEMICAL CO., LTD.
    Inventor: Koichiro Iwasa
  • Patent number: 11491421
    Abstract: A vacuum system for use with a deoxygenator system includes a housing, a movable assembly positioned within the housing, and a biasing mechanism coupling the movable assembly to the housing. The movable assembly is movable between a first position and a second position within the housing to form a low pressure area between the housing and the movable assembly. A control system including at least one pressure source is arranged in fluid communication with the low pressure area. The control system is operable to selectively communicate fluid from the at least one pressure source to the housing to form the low pressure area.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: November 8, 2022
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Gerald P. Dyer
  • Patent number: 11491461
    Abstract: A method and apparatus for removing an organosilicon component from a mixture are disclosed. The method and apparatus employ a copolymer of a di-alkenyl functional aromatic hydrocarbon and a polyorganosiloxane as the sorbent.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: November 8, 2022
    Assignee: Dow Silicones Corporation
    Inventors: Dongchan Ahn, Aaron Greiner, Robert Huber, James Thompson
  • Patent number: 11492312
    Abstract: A method for recovering paraxylene from a mixture of aromatic hydrocarbons. The process uses a pressure swing adsorption zone followed by a paraxylene recovery zone. The invention provides for lower throughput through the paraxylene recovery zone, resulting in lower capital costs and operating costs.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: November 8, 2022
    Assignee: Ineos US Chemicals Company
    Inventor: Brian Benjamin
  • Patent number: 11491434
    Abstract: A sorbent composition for the sequestration of mercury from a gas stream, a method for sequestering mercury from a gas stream and a method for the manufacture of a sorbent composition. The sorbent composition includes a highly porous particulate sorbent and at least two additive components, namely a non-halogen metal compound comprising a metal cation and an inorganic sulfur-containing compound, where at least a portion of the sulfur in the sulfur-containing compound has an oxidation state of equal to or less than +4. The method includes injecting the highly porous particulate sorbent and the two additive components into a gas stream, either discretely or as a single sorbent composition, to sequester mercury in the particulate sorbent. The method has a high degree of efficacy for mercury removal without requiring the addition of halogens to the gas stream.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: November 8, 2022
    Assignee: ADA Carbon Solutions, LLC
    Inventors: Roger H. Cayton, Mowen Li, Micala D. Mitchek, Lingyan Song
  • Patent number: 11486637
    Abstract: A system includes a first separator that separates water from a fluid material. The water settles on the bottom of the water knock-out tank. The system includes multiple compressors to boost the pressure of the fluid material. The system includes a second separator that separates condensate from the fluid material. The system includes a mixing pipe that mixes glycol with the fluid material and a first heat exchanger that cools the mixed fluid material and glycol. The system includes a third separator that separates gaseous components and liquid components of the mixed fluid material and glycol and a fourth separator that separates the liquid components of the mixed fluid material and glycol. The system includes a fractional distillation column that heats a first liquid from the fourth separator, gasifying a first portion of the first liquid. A second portion of the first liquid remains liquid and is natural gas liquids.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: November 1, 2022
    Assignee: Coldstream Energy IP, LLC
    Inventors: Erik Woodward, Gerald Scott Meinecke
  • Patent number: 11471824
    Abstract: A carbon molecular sieve (CMS) membrane having improved separation characteristics for separating olefins from their corresponding paraffins is comprised of carbon with at most trace amounts of sulfur and a transition metal, wherein the transition metal is one or more of a group 4-10 and 12 transition metal. The CMS membrane may be made by pyrolyzing a precursor polymer devoid of sulfur in which the precursor polymer has had a transition metal incorporated into it. The pyrolyzing for the precursor having the transition metal incorporated into it is performed in a nonoxidizing atmosphere and at a heating rate and temperature such that the metal has a valence greater than zero (i.e., not metal bonded) to a valence desirably closer to its maximum valence.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: October 18, 2022
    Assignees: Dow Global Technologies LLC, Georgia Tech Research Corporation
    Inventors: Yu-Han Chu, William J. Koros, Liren Xu, Mark K. Brayden, Marcos V. Martinez
  • Patent number: 11471792
    Abstract: A filtering device and a filtering method are provided. The filtering device includes a bubble filtering system. The bubble filtering system at least includes a first bubble filtering system and a second bubble filtering system. The first bubble filtering system configured for performing a first bubble filtration in the solution. The second bubble filtering system configured for performing a second bubble filtration in the solution. Filter fineness of the second bubble filtering system is higher than filter fineness of the first bubble filtering system.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: October 18, 2022
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Xuanyun Wang
  • Patent number: 11473026
    Abstract: An aminal compound is injected into a fluid gas stream including at least one acid gas to reduce the amount of acid gas in the fluid gas stream. Having two reactive sites present in the aminal compound enables a much higher efficiency of acid gas capture than a simple alkanolamine, which isn't effective, for example, under dilute circumstances.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: October 18, 2022
    Assignee: Foremark Performance Chemicals
    Inventors: Jon Bingham, Marlon O. Treasure
  • Patent number: 11473837
    Abstract: A design is provided to convert a gas subcooled process plant to a recycle split vapor process for recovering ethane and propane from natural gas. When in operation, the recovery of ethane and propane can exceed 97 to 99 wt. % of the stream being processed. A second smaller demethanizer column is added to the gas subcooled process plant as well as the addition of several cryogenic pumps.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: October 18, 2022
    Assignee: UOP LLC
    Inventors: David M. Thom, Jeffrey R. Garrison, David Farr
  • Patent number: 11471819
    Abstract: An object of the present invention is to provide a gas refining apparatus which can produce a product gas with high purity and high yield at low cost and can produce a plurality of types of gas as a product gas without changing an adsorbent, and the present invention provides a gas refining apparatus (10) including a first derivation line (L3) connected to the second adsorption towers (2a, 2b) and through which the first gas flows, a second derivation line (L4) connected to the second adsorption towers (2a and 2b) and through which the second gas flows, a regeneration line (L5) connected to the first adsorption towers (1a, 1b), through which a regeneration gas for regenerating a first adsorbent in the first adsorption towers (1a, 1b) flows, and a pump (P) provided in the second derivation line (L4) and configured to desorb the second gas from a second adsorbent in the second adsorption towers (2a and 2b), and the regeneration line (L5) is connected to each of the first derivation line (L3) and the second deri
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: October 18, 2022
    Assignee: TAIYO NIPPON SANSO CORPORATION
    Inventors: Kazuo Yamamoto, Hiroyuki Ono, Takafumi Tomioka