Patents Examined by Youngsul Jeong
  • Patent number: 11401222
    Abstract: A method for the recovery paraxylene with reduced crystallization. Paraxylene is recovered from a mixture of C8 aromatic hydrocarbons in a pressure swing adsorption zone and a crystallization zone. The invention provides for lower throughput through the crystallization zone, resulting in lower capital costs, reduced electricity in operating separation equipment, as well as reduced refrigeration duty.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: August 2, 2022
    Assignee: INEOS US CHEMICALS COMPANY
    Inventor: Brian Benjamin
  • Patent number: 11396485
    Abstract: Processes for cracking an alkane reactant to form a lower aliphatic hydrocarbon product and for converting an alkane reactant into a higher aliphatic hydrocarbon product are disclosed, and these processes include a step of contacting the alkane reactant with a supported chromium (II) catalyst. In addition to the formation of various aliphatic hydrocarbons, such as linear alkanes, branched alkanes, 1-alkenes, and internal alkenes, aromatic hydrocarbons and hydrogen also can be produced.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: July 26, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Carlos A. Cruz, Max P. McDaniel, Masud M. Monwar, Jared L. Barr
  • Patent number: 11391498
    Abstract: A bidirectional filter drier has a generally spherical outer shell having a first opening and a second opening. The shell contains a desiccant core and first and second filter elements. The first filter element is on a first side of the core, adjacent the first opening, and the filter flexible element on a second side of the core adjacent the second opening. The first filter element and the second filter element control flow around and through the core depending on the direction of fluid flow through the filter drier.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: July 19, 2022
    Assignee: Parker-Hannifin Corporation
    Inventors: Christopher Reeves, David Derner
  • Patent number: 11389788
    Abstract: Provided is a scalable delamination of a SSZ-70 framework zeolite, without the need for sonication, which has been previously made difficult by the charged nature of the imidazolium structure-directing agents that are required for zeolite synthesis. The method comprises contacting a B-SSZ-70 zeolite precursor with a zinc source such as zinc nitrate and a fluoride source.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: July 19, 2022
    Assignees: Chevron U.S.A. Inc., The Regents of the University of California
    Inventors: Alexander Katz, Alexander Okrut, Martina Aigner, Xiaoying Ouyang, Stacey Ian Zones
  • Patent number: 11383225
    Abstract: The present invention relates to a hydrocarbon conversion catalyst system comprising: a first composition comprising a dehydrogenation active metal on a solid support; and a second composition comprising a transition metal on an inorganic support and a hydrocarbon conversion process utilizing the hydrocarbon conversion catalyst system.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: July 12, 2022
    Assignee: SMH Co., Ltd
    Inventors: Kongkiat Suriye, Amnart Jantharasuk, Wuttithep Jareewatchara
  • Patent number: 11384289
    Abstract: Systems and methods are provided for conversion of methanol to gasoline in an integrated system that can also upgrade light paraffins generated by the methanol conversion process to aromatics. In some aspects, the integrated configuration can include integration of the stage for upgrading of light paraffins to aromatics into the product separation sequence for processing of the methanol conversion effluent. In other aspects, the integrated configuration can further include sharing a common catalyst between the methanol conversion stage and the stage for upgrading light paraffins to aromatics.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: July 12, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Suriyanarayanan Rajagopalan, Mohsen Harandi
  • Patent number: 11384037
    Abstract: The invention relates to a process for removing dienes from a material stream comprising C3 to C5 hydrocarbons by selective hydrogenation at a specified reaction pressure and a specified reaction temperature in the presence of a hydrogenation catalyst, wherein the reaction pressure and the reaction temperature at the reactor inlet are regulated such that the reaction pressure at the reactor inlet does not deviate by more than 0.01 bar from the specified reaction pressure and the reaction temperature at the reactor inlet does not deviate by more than 0.1° C. from the specified reaction temperature and the proportion of hydrogen supplied to the selective hydrogenation is in the range from 2 to 20 moles per mole of diene present in the material stream comprising C3 to C5 hydrocarbons.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: July 12, 2022
    Assignee: BASF SE
    Inventors: Stefan Iselborn, Andreas Joerg Ufer, Joachim Koetter
  • Patent number: 11376574
    Abstract: Disclosed are a bifunctional catalyst and a preparation method therefor, the bifunctional catalyst being suitable to produce high-value aromatic hydrocarbons by subjecting alkylaromatic hydrocarbons to a disproportionation/transalkylation/dealkylation reaction while suppressing aromatic loss or subjecting C8 aromatic hydrocarbons to an isomerization reaction while suppressing xylene loss.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: July 5, 2022
    Assignee: SK Innovation Co., Ltd.
    Inventors: Sang Il Lee, Ji Hoon Lee, Young Eun Cheon
  • Patent number: 11377401
    Abstract: A gas conditioning system is described herein. The system includes a slug catcher configured to separate a hydrocarbon feed stream into a liquid stream and a gas stream, and a first hydrate inhibitor injection unit configured to lower a hydrate formation temperature of the gas stream using a first hydrate inhibitor. The system includes a pressure reduction unit, a first separation unit configured to remove a first liquid stream including the first hydrate inhibitor from the gas stream, a mercury removal unit, and an acid gas removal unit. The system also includes a second hydrate inhibitor injection unit configured to further lower the hydrate formation temperature of the gas stream using a second hydrate inhibitor, a cooling unit, a second separation unit configured to remove a second liquid stream including the second hydrate inhibitor from the gas stream, and a dehydration unit configured to produce a final treated gas stream.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: July 5, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventor: Paul W. Sibal
  • Patent number: 11377402
    Abstract: Systems and methods are provided for integration of an aromatic formation process for converting non-aromatic hydrocarbon to an aromatic product and subsequent methylating of a portion of the aromatic product to produce a methylated product, with improvements in the aromatic formation process and/or the methylation process based on integrating portions of the secondary processing trains associated with the aromatic formation process and the methylation process. The aromatic formation process and methylation process can be used, for example, for integrated production of specialty aromatics or gasoline blending components.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: July 5, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Catherine M. Dorsi, Todd E. Detjen, Mayank Shekhar, Anthony Go
  • Patent number: 11377399
    Abstract: A process and related system for producing para-xylene (PX). In an embodiment, the process includes (a) separating a feed stream comprising C6+ aromatic hydrocarbons into a toluene containing stream and a C8+ hydrocarbon containing stream and (b) contacting at least part of the toluene containing stream with a methylating agent in a methylation unit to convert toluene to xylenes and produce a methylated effluent stream. In addition, the process includes (c) recovering PX from the methylated effluent stream in (b) to produce a PX depleted stream and (d) transalkylating the PX depleted stream to produce a transalkylation effluent stream. The transalkylation effluent stream includes a higher concentration of toluene than the PX depleted stream. Further, the process includes (e) converting at least some ethylbenzene (EB) within the C8+ hydrocarbon containing stream into toluene and (f) flowing the toluene converted in (e) to the contacting in (b).
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: July 5, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michel Molinier, Hari Nair, Scott J. Weigel, Michael Salciccioli, Doron Levin
  • Patent number: 11370672
    Abstract: In a gas collecting method for collecting gas yielding from source material on a sea bottom, [1] releasing a collecting membrane into water, a fixture being connected with a lower end of the collecting membrane and the collecting membrane being flared downward from its top; [2] keeping a three-dimensional position of the fixture at a target position with its autonomous navigation by a position maintainer provided in the fixture; [3] based on vertical water temperature distribution, setting the lower end at a position that is higher than the sea bottom and shallower than a water depth where the source material separates from its solid state into water and gas and setting the top at a deeper position than a water depth where bubbles of the gas disappear due to mixture of the gas with seawater; and [4] collecting the gas released from the sea bottom by the collecting membrane.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: June 28, 2022
    Inventor: Chiharu Aoyama
  • Patent number: 11370730
    Abstract: The present specification provides a method for preparing 1,3-butadiene, the method comprising: (A) obtaining a first product comprising a light component, 1,3-butadiene, and a heavy component from a reactant comprising butene; (B) separating the heavy component from a second product comprising the 1,3-butadiene and the light component by condensing the heavy component after heat exchanging the first product; and (C) separating concentrated heavy component by reboiling the condensed heavy component.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: June 28, 2022
    Assignee: LG CHEM, LTD.
    Inventors: Hyunseok Nam, Jun Han Kang, Kyong Yong Cha, Jaewon Jeong, Dong Hyun Ko, Jun Kyu Han, Sang Jin Han, Kyung Moo Lee, Joohyuck Lee, Daeheung Choi, Myungji Suh, Ye Seul Hwang, Sunhwan Hwang, Seongmin Kim
  • Patent number: 11370980
    Abstract: The invention relates to a process and system arrangement to generate benzene, toluene and xylenes in a refinery. The process relies on recycling a C9+ aromatic bottoms stream from an aromatic recovery complex back to rejoining a hydrotreated naphtha stream as it enters a catalytic reformer. The aromatic bottoms can be further reacted through both the reformer and the subsequent aromatic recovery complex to transform to higher value compounds, thereby reducing waste or reducing bottoms' presence in gasoline pools.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: June 28, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins
  • Patent number: 11364479
    Abstract: Disclosed are zeolitic imidazolate framework (ZIF) compositions in which at least a portion of the ligands in its shell have been exchanged with other ligands, and methods of making such shell-ligand-exchanged ZIFs. Also disclosed is the use of such shell-ligand-exchanged ZIFs in hydrocarbon separation processes.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: June 21, 2022
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Joseph M. Falkowski, Mobae Afeworki, David C. Calabro, Yi Du, Himanshu Gupta, Simon C. Weston
  • Patent number: 11345869
    Abstract: A hydrate formation promoter and the use thereof in methane storage. The hydrate formation promoter is a mixed aqueous solution including cyclopentane, sodium dodecyl sulfate and water, wherein a volume fraction of the cyclopentane is 5% to 23.4% and a mass fraction of the sodium dodecyl sulfate is 0.01% to 0.08%. The hydrate formation promoter can realize effective and rapid formation of methane hydrate at approximate room temperature (25° C.), and can remain stable at higher temperatures.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: May 31, 2022
    Assignee: GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiaosen Li, Yisong Yu, Zhaoyang Chen
  • Patent number: 11339344
    Abstract: A method for producing a renewable base oil from a feedstock of biological origin includes providing a feedstock, the feedstock including: 2-95 wt % of a mixture of free fatty acids; 5-98 wt % fatty acid glycerols selected from mono-glycerides, di-glycerides and tri-glycerides of fatty acids; 0-50 wt % of one or more compounds selected from the list consisting of: fatty acid esters of the non-glycerol type, fatty amides and fatty alcohols; a major part of the feedstock being a mixture of free fatty acids and fatty acid glycerols; subjecting all or part of the feedstock to ketonisation reaction conditions where two free fatty acids react to yield a ketone stream, and subjecting the ketone stream to both hydrodeoxygenation and to hydroisomerisation reaction conditions, to yield a deoxygenated and isomerised base oil product stream containing the renewable base oil.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: May 24, 2022
    Assignee: NESTE OYJ
    Inventors: Jukka Myllyoja, Sonja Kouva, Jarno Kohonen, Rami Piilola, Mika Kettunen, Jaana Makkonen, Meri Hovi
  • Patent number: 11332417
    Abstract: The present invention relates to a system and process for preparing aromatics from syngases, which has advantages of shortened flow process and reduced investment. The process comprises reforming the liquefied gas, separated dry gas with a water steam to produce carbon monoxide and hydrogen, which return, as raw materials, to the aromatization system, so that the problem of by-product utilization is solved, and the syngas unit consumption per ton of aromatic products is reduced. The problem of utilization of a dry gas as a by-product is also solved in the present invention from the perspective of recycling economy, which reduces the water consumption in the process, and conforms to the concept of green chemistry.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: May 17, 2022
    Assignees: HUADIAN COAL INDUSTRY GROUP CO., LTD., TSINGHUA UNIVERSITY
    Inventors: Yu Cui, Xiaofan Huang, Xiaoping Tang, Tong Wang, Weizhong Qian, Fei Wei, Changping Gao, Xiulin Wang, Zuoru Yin
  • Patent number: 11319263
    Abstract: Methods of producing 1-butene from a 2-butene-containing feedstock include feeding a hydrocarbon feed comprising 2-butene to a reactor, the reactor containing an isomerization catalyst and contacting the hydrocarbon feed with the isomerization catalyst in the reactor at a temperature from 150° C. to 350° C. to produce an isomerization reaction effluent comprising 1-butene. Further, the isomerization catalyst comprises a MCM-48 catalyst with WO3 incorporated into a silica framework of the MCM-48 catalyst.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: May 3, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Afnan Alghannam, Munir D. Khokhar, Sohel K. Shaikh
  • Patent number: 11319496
    Abstract: A process for blending a hydrocarbon-based composition that includes combining a first heated water stream with a first hydrocarbon-based composition comprising asphaltene to create a first combined feed stream and allowing the first heated water stream and the first hydrocarbon-based composition to interact such that the second combined feed stream comprises micelles and reverse micelles, thereby preventing asphaltene aggregation. The process further includes similarly combining a second heated water stream with a second hydrocarbon-based composition to form a second combined feed stream. The process further includes introducing the first combined feed stream and the second combined stream into a supercritical blending vessel operating at a temperature greater than a critical temperature of water and a pressure greater than a critical pressure of water, and blending the first combined feed stream and the second combined stream to form a blended hydrocarbon-based composition.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: May 3, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Mazin M. Fathi, Ki-Hyouk Choi