Patents Examined by Zekre Tsehaye
  • Patent number: 8749218
    Abstract: A control circuit according to an embodiment of the present invention for a DC-DC converter which has an input, an output and a series connection of a differentiator, a comparator unit, and an integrator. The series connection is coupled in between the input and the output. The comparator unit has an inverting amplifier.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: June 10, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Loreto Mateu, Markus Pollak, Peter Spies
  • Patent number: 8742738
    Abstract: A method and system control the adding or dropping of phases in a multiphase voltage regulator. The regulator has an efficiency and this efficiency of the regulator is calculated for a given number of phases being activated from an output voltage, input voltage, output current, and duty cycle of the regulator. The efficiency of the regulator is also calculated if a phase is added using the derivative of the duty cycle as a function of the output current. The efficiency of the regulator is further calculated if a phase is dropped using the derivative of the duty cycle as a function of the output current. From these operations of calculating, a phase is either added, dropped, or the phase is maintained at its current value to thereby optimize the efficiency of the regulator.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: June 3, 2014
    Assignee: Intersil Americas Inc.
    Inventor: Michael Jason Houston
  • Patent number: 8743577
    Abstract: Embodiments of the subject invention relate to a method and apparatus for providing a low-power AC/DC converter designed to operate with very low input voltage amplitudes. Specific embodiments can operate with input voltages less than or equal to 1 V, less than or equal to 200 mV, and as low as 20 mV, respectively. Embodiments of the subject low-power AC/DC converter can be utilized in magnetic induction energy harvester systems. With reference to a specific embodiment, a maximum efficiency of 92% was achieved for a 1 V input, and efficiencies exceeding 70% were achieved for a 200 mV input. A specific embodiment functioned properly when connected to a magnetic energy harvester device operating below 200 mV input.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: June 3, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Shuo Cheng, Yuan Rao
  • Patent number: 8736091
    Abstract: The present techniques include methods and systems for operating converter to maintain a lifespan of the converter. In some embodiments, the operating frequency of the converter may be increased such that stress may be reduced on the bond wires of the converter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the converter operating in a maximum power point tracking (MPPT) mode and determining whether the MPPT operation results in aging the converter to a point which reduces the converter lifespan below a desired lifespan. If the MPPT operation reduces the converter lifespan below the desired lifespan, the frequency of the converter may be increased such that the converter may be controlled to operate at a percentage of MPPT. Thus, in some embodiments, power output may be optimized with respect to maintaining a desired lifespan of the converter.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: May 27, 2014
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Lixiang Wei, Russel J. Kerkman, Richard A. Lukaszewski, Haihui Lu, Zhenhuan Yuan
  • Patent number: 8730700
    Abstract: In controlling switching elements of a current source inverter, a switching loss in the switching element is prevented according to a normal switching operation for a commutation operation, without requiring any particular control. In the commutation operation of the current source inverter, a timing for driving the switching elements is controlled in such a manner that an overlap period is generated, during when both a switching element at the commutation source and a switching element at the commutation target are set to be the ON state, a resonant circuit is controlled based on the control of the switching elements having this overlap period, and resonant current of the resonant circuit reduces the switching loss upon commutation operation of the switching elements.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: May 20, 2014
    Assignee: Kyosan Electric Mfg. Co., Ltd.
    Inventors: Itsuo Yuzurihara, Toshiyuki Adachi, Shinichi Kodama
  • Patent number: 8705257
    Abstract: A switching module includes a series-connected unit of a first flowing restriction element and a second flowing restriction element, the first flowing restriction element having an opening and closing function of opening and closing a flowing path of current, and the second flowing restriction element having at least one of a rectifying function of restricting the direction in which current flows and the opening and closing function, and a snubber circuit connected to the series-connected unit in parallel. A first wiring line connecting between the first flowing restriction element and the snubber circuit, a second wiring line connecting between the second flowing restriction element and the snubber circuit, a third wiring line connecting between the first flowing restriction element and the second flowing restriction element, the first flowing restriction element, the second flowing restriction element, and the snubber circuit are formed substantially integrally with each other by using an insulator.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: April 22, 2014
    Assignee: Denso Corporation
    Inventors: Nobuhisa Yamaguchi, Yasuyuki Sakai
  • Patent number: 8698479
    Abstract: A bandgap reference circuit includes a first circuit, a second circuit and a third circuit. The first circuit is for generating a first current and a first voltage according to a first reference voltage. The second circuit is coupled to the first circuit, for generating a second voltage according to the first voltage. The third circuit is coupled to the first circuit and the second circuit, for generating a voltage offset according to the first current, and generating a bandgap reference voltage according to the second voltage and the voltage offset. The first circuit and the second circuit complement each other for offsetting variations of the bandgap reference voltage due to temperature changes.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 15, 2014
    Assignee: Elite Semiconductor Memory Technology Inc.
    Inventor: Ming-Sheng Tung
  • Patent number: 8698472
    Abstract: An adjustable driver voltage source for a switching power supply uses a linear regulator to provide a driver voltage, and a modulator to adjust the driver voltage according to the loading change of the switching power supply. The modulator may lower the driver voltage at light load to reduce the switching loss and thereby increase the power efficiency of the switching power supply.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: April 15, 2014
    Assignee: Richtek Technology Corp.
    Inventors: Tsung-Hsi Yang, Shao-Hung Lu, Isaac Y. Chen, Wei-Haur Chan
  • Patent number: 8693223
    Abstract: A power converter includes an output unit, a first transformer, a switch unit, and a processing unit. The first transformer includes a primary winding and a secondary winding. The primary winding is coupled between an input voltage and a first node. The switch unit is coupled between the first node and a second node. The processing unit is coupled between the input voltage and the first node. When the switch unit is in an OFF state, the processing unit is used to receive a first sensing voltage and store a sensing power of the first sensing voltage through a first path, isolate the first sensing voltage from feeding in through a second path different from the first path simultaneously, and then release the stored sensing power through the second path. The first sensing voltage is generated as the switch unit switches from an ON state to the OFF state.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: April 8, 2014
    Assignee: FSP Technology Inc.
    Inventor: Cody Lin
  • Patent number: 8686761
    Abstract: A gate driver of a switching element includes a first capacitor having a first end connected to a DC power source, a first switch having a first electrode connected to the first end of the first capacitor and a second electrode connected to a negative electrode of the DC power source, a second switch having a third electrode connected to the second electrode and the negative electrode of the DC power source and a fourth electrode connected to the first capacitor, a second capacitor connected in parallel with the third and fourth electrodes of the second switch and having a first end connected to the DC power source, and a negative voltage controller connecting the gate of the switching element to the second end of the first capacitor and a second end of the second capacitor when the switching element is turned off.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 1, 2014
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Keiichiro Ozawa
  • Patent number: 8687390
    Abstract: An active clamp DC-DC converter includes a transformer having a primary coil and a secondary coil, a main switching device connected in series to the primary coil of the transformer so that the main switching device and the primary coil are connected in parallel to a DC power source, a reset capacitor, a reset switching device connected in series to the reset capacitor so that the reset switching device and the reset capacitor are connected in parallel to the primary coil of the transformer, a rectifying circuit connected to the secondary coil of the transformer, a smoothing circuit connected to the rectifying circuit, and a control circuit adjusting a dead time that elapses from the time when the reset switching device is turned off until the time when the main switching device is turned on, based on a voltage across the main switching device.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: April 1, 2014
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Yasuhiro Koike, Sergey Moiseev, Masanori Tsuzaka
  • Patent number: 8669751
    Abstract: A controller for regulating an output of a power supply includes a logic block and an oscillator. The logic block generates the drive signal to control switching of a power switch in response to a clock signal. The clock signal has a frequency that decreases responsive to a time period of the drive signal, where a decrease in the time period of the drive signal represents an increase in an input voltage of the power supply. The oscillator is coupled to generate the clock signal in response to a waveform having an amplitude swing. The oscillator alters the waveform in response to the time period of the drive signal.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: March 11, 2014
    Assignee: Power Integrations, Inc.
    Inventors: Balu Balakrishnan, Alex B. Djenguerian, Leif Lund
  • Patent number: 8659915
    Abstract: A valley-detection device for quasi-resonance switching and a method using the same is disclosed, which uses first and second capacitors to connect with a comparator, and the comparator connects with an NMOSFET connecting to a transformer. When the NMOSFET is turned off, the energy stored in the transformer is discharged and a resonant signal across the source and the drain is generated, and a first constant current charges the first capacitor at a start time point of the resonant signal until a voltage of the resonant signal first reaches to a crossing voltage. Then, a second constant current charges the second capacitor when the voltage of the resonant signal equals to the crossing voltage while the voltage of the resonant signal varies from high to low. Finally, the comparator turns on the NMOSFET when a voltage of the second capacitor equals to a voltage of the first capacitor.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: February 25, 2014
    Assignee: SYNC Power Corp.
    Inventor: Cheng-Wen Tsui
  • Patent number: 8659272
    Abstract: To provide a DC/DC converter capable of down-sizing magnetic components and varying boosting and bucking ratios, and a bidirectional boosting-bucking operations, a bidirectional boosting-bucking magnetic-field cancellation type of DC/DC converter (10) is provided which includes: a first voltage side port (P1), a second voltage side port (P2); a common reference terminal (CP), a smoothing capacitor (C1), four switching elements (SW1, SW2, SW3, SW4), an inductors (L1, L2), a magnetic-field cancellation type transformer T including a primary winding (L3) and a secondary winging (L4), four switching elements (SW5, SW6, SW7, SW8), and a smoothing capacitor (C2).
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: February 25, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yasuto Watanabe, Mitsuaki Hirakawa
  • Patent number: 8648582
    Abstract: The present invention provides a programmable low dropout linear regulator using a reference voltage to convert an input voltage into a regulated voltage according to a control signal. The programmable low dropout linear regulator includes an operational amplifier having a negative input coupled to receive the reference voltage, a first transistor having a gate coupled to an output terminal of the operational amplifier and a first source/drain coupled to an output terminal of the regulated voltage, a first impedance coupled between a positive input of the operational amplifier and the output terminal of the regulated voltage, and a second impedance coupled between the positive input of the operational amplifier and a ground. The second impedance includes a second transistor having a gate coupled to receive the control signal.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: February 11, 2014
    Assignee: National Chung Cheng University
    Inventors: Chung-Hsun Huang, Ke-Ming Su
  • Patent number: 8618780
    Abstract: A multimode voltage regulator comprises an output for providing a regulator output voltage Vdd and an output current to a load and a low power reference voltage source having a reference voltage output providing the regulator output voltage Vdd, when in a first low power mode the output current is not greater than a threshold value. It may comprise a buffer amplifier having an output providing the regulator output voltage Vdd, when the output current is greater than the threshold value and a first bias voltage input being connected in a second low power mode to the reference voltage output when the output current is greater than the threshold value for less than a predefined time. And it may comprise a mode controller for automatically determining the output current and automatically switching from first low power mode to second low power mode.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: December 31, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Philippe Mounier, Estelle Huynh, David Lopez, Thierry Sicard
  • Patent number: 8618783
    Abstract: A DC-DC converter for generating an output voltage from input voltage, includes: an output stage for outputting the output voltage; an error amplifier having an input and a reference input for receiving a feedback voltage at the input in accordance with the output voltage and for receiving a reference voltage at the reference input, the error amplifier generating an amplified voltage for driving the output stage, the amplifier voltage corresponding to the difference between the feedback voltage and the reference voltage; a phase compensation unit for generating a phase compensation component to the feedback voltage; and a phase compensation controller for controlling the phase of the phase compensation unit; wherein the feedback voltage is determined by the output voltage plus said phase compensation component.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: December 31, 2013
    Assignee: Spansion LLC
    Inventor: Hideta Oki
  • Patent number: 8611115
    Abstract: A resonant converter comprises first and second input terminals (1, 2) to connect a voltage source (VBulk). A series connection of a first switch (S1) and a second switch (S2) is connected between the input terminals. A resonant circuit with a resonant inductance, at least one resonant capacitor (C1, C2, Cs), and at least a primary winding of a transformer (T1, T1—a, T1—b) is connected to the common Terminal of the first switch (S1) and the second switch (S2). A diode (D3) is connected in conduction direction from the first input Terminal (1) to the clamping capacitor (Cclamp). Another diode (D4) is connected in conduction direction from the clamping capacitor (Cclamp) to the second input terminal (2). A comparator (5) is connected across the clamping capacitor (Cclamp). The comparator (5) is further connected to a pulse control unit (3) to control the first and second switches (S1, S2).
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 17, 2013
    Assignee: DET International Holding Limited
    Inventors: Heiko Figge, Frank Schafmeister
  • Patent number: 8564995
    Abstract: A method is for controlling a three-phase current converter. First, subtract a second reference current signal representing the predicted current of the three-phase terminals in the present switching cycle from a first reference current signal representing the predicted current of the three-phase terminals in the next switching cycle to obtain a predicted variation. Then, subtract a feedback current signal representing the feedback current of the three-phase terminals in the previous switching cycle from the second reference current signal delayed by one switching cycle to obtain a current error. Multiply the current error by an error coefficient then add the predicted variation to obtain a current variation. Finally, obtain duty ratios of a plurality of switches, according to the current variation and inductance of the first to the third inductor. The three-phase current converter converts electric power between a DC terminal and the three-phase terminals, according to the duty ratio.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: October 22, 2013
    Assignee: National Chung Cheng University
    Inventors: Tsai-Fu Wu, Chih-Hao Chang, Li-Chiun Lin, Yu-Kai Chen
  • Patent number: 8552699
    Abstract: An EMI reduction network for a converter, the converter including upper and lower power switches provided between an input voltage node and a reference node. An inductance is coupled between the input voltage node and the upper switch at a first node, a capacitance and an auxiliary power switch are coupled in series between the first and reference nodes, and a controller is provided to control switching. The controller switches the upper switch based on a PWM signal. The controller keeps the lower switch turned on until the phase node goes positive while the upper switch is on. The controller turns the auxiliary switch on after the lower power switch is turned off and turns the auxiliary switch off after the upper power switch is turned off. The lower and auxiliary switches may be zero voltage switched, and the upper switch may be zero current switched.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 8, 2013
    Assignee: Intersil Americas Inc.
    Inventors: Zaki Moussaoui, Jifeng Qin, Colm Brazil