Patents by Inventor A. Prasad

A. Prasad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250131301
    Abstract: A method includes obtaining, using at least one processing device of an electronic device, information defining a combinatorial logic gate design for a combinatorial logic circuit. The method also includes generating, using the at least one processing device, one or more polynomials representing operation of the combinatorial logic gate design. The method further includes mapping, using the at least one processing device, the one or more polynomials to one or more quantum polynomials, where each quantum polynomial has terms that are orthonormal. In addition, the method includes generating, using the at least one processing device, a quantum gate logic design based on the one or more quantum polynomials, where the quantum gate logic design is functionally equivalent to or better than the combinatorial logic gate design for the combinatorial logic circuit.
    Type: Application
    Filed: August 27, 2024
    Publication date: April 24, 2025
    Inventors: Paul C. Hershey, Vikram A. Prasad, Marcus A. Teter, Brianne R. Hoppes, Michael T. Bahns
  • Patent number: 12165907
    Abstract: Embodiments of the present disclosure generally relate to apparatus for substrate processing, and more specifically to apparatus for rotating substrates and to uses thereof. In an embodiment, an apparatus for rotating a substrate is provided. The apparatus includes a levitatable rotor comprising a plurality of magnets embedded therein, a plurality of gas bearings positioned to levitate the levitatable rotor, and a stator magnetically coupled to the levitatable rotor, the stator for producing a rotating magnetic field. Apparatus for processing a substrate with the apparatus for rotating substrates as well as methods of use are also described.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: December 10, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Giridhar Kamesh, Vinodh Ramachandran, Chaitanya A. Prasad, Mohammad Aamir, Daniel C. Glover
  • Publication number: 20240282556
    Abstract: Implementations of the present disclosure generally relate to an improved substrate support pedestal assembly. In one implementation, the substrate support pedestal assembly includes a shaft. The substrate support pedestal assembly further includes a substrate support pedestal, mechanically coupled to the shaft. The substrate support pedestal comprises substrate support plate coated on a top surface with a ceramic material.
    Type: Application
    Filed: May 2, 2024
    Publication date: August 22, 2024
    Inventors: Lara HAWRYLCHAK, Chaitanya A. PRASAD
  • Patent number: 11990321
    Abstract: Implementations of the present disclosure generally relate to an improved substrate support pedestal assembly. In one implementation, the substrate support pedestal assembly includes a shaft. The substrate support pedestal assembly further includes a substrate support pedestal, mechanically coupled to the shaft. The substrate support pedestal comprises substrate support plate coated on a top surface with a ceramic material.
    Type: Grant
    Filed: November 23, 2022
    Date of Patent: May 21, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Lara Hawrylchak, Chaitanya A. Prasad
  • Patent number: 11816012
    Abstract: Techniques for multi-domain systems integration and evaluation are disclosed, including: obtaining criteria associated with a strategic objective; determining that a first system, operating in a first operating domain, is only partially capable of satisfying a first criterion in the criteria; determining that a second system, operating in a second operating domain that is different from the first operating domain, is capable of augmenting the first system with respect to satisfying the first criterion; responsive to determining that the second system is capable of augmenting the first system with respect to satisfying the first criterion, modeling a multi-domain system including at least a first component from the first system and at least a second component from the second system; and generating a performance metric that objectively evaluates capabilities of the multi-domain system against the criteria associated with the strategic objective.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: November 14, 2023
    Assignee: RAYTHEON COMPANY
    Inventors: Paul C. Hershey, Marcus A. Teter, Vikram A. Prasad
  • Publication number: 20230125362
    Abstract: Systems, devices, methods, and computer-readable media for concurrent visualization of sensor and communications operations. A method can include receiving mission data indicating a target, a sensor, a communications system, and an operation to be performed regarding the target, identifying one or more operational layer, functional layer, and physical layer models for the sensor and communications system, and a physical layer model for weather, identifying, based on a comparison of the physical models of the sensor and communications system to a propagation equation, any gaps or inconsistencies between the physical models of the sensor and communications system and the propagation equation, and executing a simulation model resulting in a visual display of execution of the mission using the sensor and the communications system, the simulation model generated based on a filler model that fills any identified gaps or fixes any identified inconsistencies.
    Type: Application
    Filed: October 21, 2021
    Publication date: April 27, 2023
    Inventors: Paul C. Hershey, Vikram A. Prasad, Marcus Alton Teter
  • Publication number: 20230112257
    Abstract: Techniques for multi-domain systems integration and evaluation are disclosed, including: obtaining criteria associated with a strategic objective; determining that a first system, operating in a first operating domain, is only partially capable of satisfying a first criterion in the criteria; determining that a second system, operating in a second operating domain that is different from the first operating domain, is capable of augmenting the first system with respect to satisfying the first criterion; responsive to determining that the second system is capable of augmenting the first system with respect to satisfying the first criterion, modeling a multi-domain system including at least a first component from the first system and at least a second component from the second system; and generating a performance metric that objectively evaluates capabilities of the multi-domain system against the criteria associated with the strategic objective.
    Type: Application
    Filed: October 13, 2021
    Publication date: April 13, 2023
    Inventors: Paul C. Hershey, Marcus A. Teter, Vikram A. Prasad
  • Patent number: 11615944
    Abstract: Embodiments of the present disclosure generally relate to a process chamber for conformal oxidation of high aspect ratio structures. The process chamber includes a liner assembly located in a first side of a chamber body and two pumping ports located in a substrate support portion adjacent a second side of the chamber body opposite the first side. The liner assembly includes a flow divider to direct fluid flow away from a center of a substrate disposed in a processing region of the process chamber. The liner assembly may be fabricated from quartz minimize interaction with process gases, such as radicals. The liner assembly is designed to reduce flow constriction of the radicals, leading to increased radical concentration and flux. The two pumping ports can be individually controlled to tune the flow of the radicals through the processing region of the process chamber.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: March 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Christopher S. Olsen, Eric Kihara Shono, Lara Hawrylchak, Agus Sofian Tjandra, Chaitanya A. Prasad, Sairaju Tallavarjula
  • Publication number: 20230086640
    Abstract: Implementations of the present disclosure generally relate to an improved substrate support pedestal assembly. In one implementation, the substrate support pedestal assembly includes a shaft. The substrate support pedestal assembly further includes a substrate support pedestal, mechanically coupled to the shaft. The substrate support pedestal comprises substrate support plate coated on a top surface with a ceramic material.
    Type: Application
    Filed: November 23, 2022
    Publication date: March 23, 2023
    Inventors: Lara HAWRYLCHAK, Chaitanya A. PRASAD
  • Patent number: 11515130
    Abstract: Implementations of the present disclosure generally relate to an improved substrate support pedestal assembly. In one implementation, the substrate support pedestal assembly includes a shaft. The substrate support pedestal assembly further includes a substrate support pedestal, mechanically coupled to the shaft. The substrate support pedestal comprises substrate support plate coated on a top surface with a ceramic material.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: November 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Lara Hawrylchak, Chaitanya A. Prasad
  • Patent number: 11485870
    Abstract: The present disclosure is drawn to material sets and 3-dimensional printing systems that include a fusing agent. One example of a material set can include a fusing agent and a detailing agent. The fusing agent can include water, a carbon black pigment, and a water-soluble co-solvent in an amount from 20 wt % to 60 wt %. The detailing agent can include water and a black dye. In another example, a material set can include a fusing agent and a thermoplastic polymer powder.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: November 1, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Keshava A Prasad, Alexey S Kabalnov, Stephen G. Rudisill, Ali Emamjomeh, Michael Novick, Bernardo Gutierrez
  • Publication number: 20220157643
    Abstract: Embodiments of the present disclosure generally relate to apparatus for substrate processing, and more specifically to apparatus for rotating substrates and to uses thereof. In an embodiment, an apparatus for rotating a substrate is provided. The apparatus includes a levitatable rotor comprising a plurality of magnets embedded therein, a plurality of gas bearings positioned to levitate the levitatable rotor, and a stator magnetically coupled to the levitatable rotor, the stator for producing a rotating magnetic field. Apparatus for processing a substrate with the apparatus for rotating substrates as well as methods of use are also described.
    Type: Application
    Filed: November 19, 2020
    Publication date: May 19, 2022
    Inventors: Giridhar KAMESH, Vinodh RAMACHANDRAN, Chaitanya A. PRASAD, Mohammad AAMIR, Daniel C. GLOVER
  • Publication number: 20210362410
    Abstract: In a three-dimensional printing method example, a polymeric or polymeric composite build material is applied. A fusing agent is applied on at least a portion of the build material. The fusing agent includes an aqueous or non-aqueous vehicle and an inorganic pigment dispersed in the aqueous or non-aqueous vehicle, wherein the inorganic pigment is selected from the group consisting of lanthanum hexaboride, tungsten bronzes, indium tin oxide, aluminum zinc oxide, ruthenium oxide, silver, gold, platinum, iron pyroxenes, modified iron phosphates (AxFeyPO4), modified copper pyrophosphates (AxCuyP2O7), and combinations thereof. The build material is exposed to electromagnetic radiation, thereby fusing the portion of the build material in contact with the fusing agent to form a layer.
    Type: Application
    Filed: August 5, 2021
    Publication date: November 25, 2021
    Inventors: Stephen G. Rudisill, Alexey S. Kabalnov, Keshava A. Prasad, Sivapackia Ganapathiappan, Jake Wright, Vladek Kasperchik
  • Patent number: 11173659
    Abstract: A coalescing agent for three-dimensional (3D) printing includes a co-solvent, a surfactant having a hydrophilic lipophilic balance (HLB) value that is less than 10, a carbon black pigment, a polymeric dispersant, and a balance of water. The co-solvent is present in an amount ranging from about 15 wt % to about 30 wt % of a total wt % of the coalescing agent. The surfactant is present in an amount ranging from about 0.5 wt % to about 1.4 wt % of the total wt % of the coalescing agent. The carbon black pigment is present in an amount ranging from about 3.0 wt % to about 6.0 wt % of the total wt % of the coalescing agent. The polymeric dispersant has a weight average molecular weight ranging from about 12,000 to about 20,000.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: November 16, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Keshava A. Prasad, Ali Emamjomeh, Glenn Thomas Haddick
  • Patent number: 11110653
    Abstract: In a three-dimensional printing method example, a polymeric or polymeric composite build material is applied. A fusing agent is applied on at least a portion of the build material. The fusing agent includes an aqueous or non-aqueous vehicle and a plasmonic resonance absorber having absorption at wavelengths ranging from 800 nm to 4000 nm and having transparency at wavelengths ranging from 400 nm to 780 nm dispersed in the aqueous or non-aqueous vehicle. The build material is exposed to electromagnetic radiation, thereby fusing the portion of the build material in contact with the fusing agent to form a layer.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: September 7, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Stephen G. Rudisill, Alexey S. Kabalnov, Keshava A. Prasad, Sivapackia Ganapathiappan, Jake Wright, Vladek Kasperchik
  • Patent number: 11104065
    Abstract: The present disclosure is drawn to material sets and 3-dimensional printing systems that include a fusing agent. One example of a material set can include a fusing agent and a detailing agent. The fusing agent can include water, a carbon black pigment, and a water-soluble co-solvent in an amount from 20 wt % to 60 wt %. The detailing agent can include water and a black dye. In another example, a material set can include a fusing agent and a thermoplastic polymer powder.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: August 31, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Keshava A Prasad, Alexey S Kabalnov, Stephen G. Rudisill, Ali Emamjomeh, Michael Novick, Bernardo Gutierrez
  • Publication number: 20210249284
    Abstract: A substrate support pedestal connectable to a shaft includes a thermally conductive body, a first fluid channel disposed within an outer zone of the thermally conductive body, and a second fluid channel disposed within an inner zone of the thermally conductive body. The first fluid channel and the second fluid channel are not in fluid communication with each other and are thermally isolated from each other by a thermal barrier within the substrate support channel.
    Type: Application
    Filed: February 12, 2020
    Publication date: August 12, 2021
    Inventors: Chaitanya A. PRASAD, Daniel C. GLOVER, Naman APURVA
  • Publication number: 20210214570
    Abstract: The present disclosure is drawn to material sets and 3-dimensional printing systems that include a fusing agent. One example of a material set can include a fusing agent and a detailing agent. The fusing agent can include water, a carbon black pigment, and a water-soluble co-solvent in an amount from 20 wt % to 60 wt %. The detailing agent can include water and a black dye. In another example, a material set can include a fusing agent and a thermoplastic polymer powder.
    Type: Application
    Filed: April 28, 2016
    Publication date: July 15, 2021
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Keshava A Prasad, Alexey S Kabalnov, Stephen G. Rudisill, Ali Emamjomeh, Michael Novick, Bernardo Gutierrez
  • Patent number: 11004704
    Abstract: Embodiments described herein generally relate to a processing apparatus having a cover piece that participates in preheating a process gas. In one implementation, the cover piece includes an annulus. The annulus has an inner wall with a first height, an outer wall with a second height, and a top surface. The second height is greater than the first height. The cover piece also includes an inner lip disposed adjacent the inner wall, and a plurality of fins disposed on the top surface of the annulus. The cover piece and the plurality of fins are an opaque quartz material. The cover piece provides for more efficient heating of process gases, is composed of a material capable of withstanding process conditions while providing for more efficient and uniform processing, and has a low CTE reducing particle contamination due to excessive expansion during processing.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: May 11, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Lara Hawrylchak, Chaitanya A. Prasad, Emre Cuvalci
  • Patent number: 10731044
    Abstract: The present disclosure is drawn to coalescent inks and material sets for 3D printing. The coalescent ink can include a water-soluble near-infrared dye having a peak absorption wavelength from 800 nm to 1400 nm. The coalescent ink can also contain water.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: August 4, 2020
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sivapackia Ganapathiappan, Howard S. Tom, Lihua Zhao, Krzysztof Nauka, Yan Zhao, Hou T. Ng, Keshava A. Prasad