Patents by Inventor Aathavan Karunakaran
Aathavan Karunakaran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230407386Abstract: Defocus is introduced during sequencing by synthesis by tilt of a flow cell and by variations in flatness of the flow cell. Effects of the defocus are reduced, and base calling quality is improved using techniques relating to dependence of base calling on flow cell tilt. For example, the flow cell surface height is measured throughout the flow cell. A focal height of an imager having a sensor for the sequencing is set, optionally adaptively, one or more times during the sequencing. Each image captured by the sensor is partitioned, e.g., based on differences between focal height and the measured flow cell surface height across areas of the sensor. Filters, e.g., related to defocus correction, are selected based at least in part on the difference between the focal height and the measured flow cell surface height at a particular area of the image being corrected for defocus.Type: ApplicationFiled: June 9, 2023Publication date: December 21, 2023Applicants: Illumina, Inc., Illumina Software, Inc.Inventors: Stanley Hong, Michael Gallaspy, Merek Siu, Jeffrey Gau, Anindita Dutta, Aathavan Karunakaran, Simon Prince
-
Patent number: 11835510Abstract: Methods are used for obtaining, cataloguing, and/or storing data derived from a biological source using a flow cell body, electrodes, and an imaging assembly. The data may include DNA and/or RNA obtained from a biological source, such as from the cells of an organism. The methods may be used to obtain, catalog, and/or store data such as DNA or RNA sequence from a pathogen such as a virus and/or a bacteria, human health data over time, and immune system information from an individual. The data obtained using the disclosed methods may be used for a variety of different purposes, including the manufacture of vaccine compositions, and for restoring the immune system of an individual who has undergone an immune system depleting event. The methods may be used for storage of biological cells, which may be used for the screening of compounds, such as small molecules with potential for therapeutic indications.Type: GrantFiled: September 9, 2021Date of Patent: December 5, 2023Assignee: ILLUMINA, INC.Inventors: Tarun Khurana, Ali Agah, Aathavan Karunakaran, Xi-Jun Chen
-
Publication number: 20230383342Abstract: Embodiments of the present disclosure relate to kits, compositions, and methods for nucleic acid sequencing, for example, two-channel nucleic acid sequencing by synthesis using blue and green light excitation. In particular, unlabeled nucleotides for incorporation may be used in conjunction with affinity reagents containing detectable labels excitable by blue and/or green lights, for specific binding to each type of nucleotides incorporated.Type: ApplicationFiled: May 30, 2023Publication date: November 30, 2023Inventors: Xiaolin Wu, Patrick McCauley, Madushani Dharmarwardana, Saurabh Nirantar, Misha Golynskiy, Xiangyuan Yang, Ramesh Neelakandan, Benedict Mackworth, Carole Anastasi, Aathavan Karunakaran, Gery M. Vessere, David Bracher
-
Publication number: 20230321651Abstract: An apparatus includes a flow cell body, a plurality of electrodes, an integrated circuit, and an imaging assembly. The flow cell body defines one or more flow channels and a plurality of wells. Each flow channel is configured to receive a flow of fluid. Each well is fluidically coupled with the corresponding flow channel. Each well is configured to contain at least one polynucleotide. Each electrode is positioned in a corresponding well of the plurality of wells. The electrodes are operable to effect writing of polynucleotides in the corresponding wells. The integrated circuit is operable to drive selective deposition or activation of selected nucleotides to attach to polynucleotides in the wells to thereby generate polynucleotides representing machine-written data in the wells. The imaging assembly is operable to capture images indicative of one or more nucleotides in a polynucleotide.Type: ApplicationFiled: May 26, 2023Publication date: October 12, 2023Inventors: Ali Agah, Aathavan Karunakaran, Tarun Khurana, Stanley Hong, Merek Siu, Arvin Emadi, Craig Ciesla
-
Publication number: 20230295719Abstract: Systems and methods of identifying nucleobases in a template polynucleotide are disclosed. In one embodiment, such a method may include providing a substrate comprising a plurality of double stranded template polynucleotides in a cluster. Each double stranded template polynucleotide may comprise a first strand and a second strand. The method may further include contacting the plurality of double stranded template polynucleotides with first primers which bind to the first strand and second primers which bind to the second strand. The method may further include extending the first primers and the second primers by contacting the cluster with labeled nucleobases to form first labeled primers and second labeled primers. The method may further include stimulating light emissions from the first and second labeled primers, wherein an amplitude of the signal generated by the first labeled primers is greater than an amplitude of the signal generated by the second labeled primers.Type: ApplicationFiled: March 15, 2023Publication date: September 21, 2023Inventors: Aathavan Karunakaran, Nileshi Saraf, Samantha Antonio Leong, Ramir Villa Vega, Gery Vessere
-
Publication number: 20230296516Abstract: Artificial intelligence driven signal enhancement of sequencing images enables enhanced sequencing by synthesis that determines a sequence of bases in genetic material with any one or more of: improved performance, improved accuracy, and/or reduced cost. A training set of images taken at unreduced and reduced power levels used to excite fluorescence during sequencing by synthesis is used to train a neural network to enable the neural network to recover enhanced images, as if taken at the unreduced power level, from unenhanced images taken at the reduced power level.Type: ApplicationFiled: February 17, 2023Publication date: September 21, 2023Applicants: Illumina, Inc., Illumina Software, Inc.Inventors: Anindita Dutta, Michael Gallaspy, Jeffrey Gau, Stanley Hong, Aathavan Karunakaran, Simon Prince, Merek Siu, Yina Wang, Rishi Verma
-
Publication number: 20230285974Abstract: Devices, systems, and methods for non-volatile storage include a well activation device operable to modify one or more wells from a plurality of wells of a flow cell to provide a set of readable wells. Readable wells are configured to allow exposure of a well to substances from nucleotide sequencing fluids, and prevent exposure to other substances and fluids, such as nucleotide synthesizing fluids. The well activation device may also modify wells to provide a set of writeable wells. This set of wells is configured to allow exposure to the nucleotide synthesizing fluids and substances; and prevent exposure to the nucleotide sequencing fluids and substances. There may also be provisions made for risk mitigation for data errors such as generating commands to write specified data to a nucleotide sequence associated with a particular location in a storage device, reading the nucleotide sequence and performing a comparison.Type: ApplicationFiled: January 31, 2023Publication date: September 14, 2023Inventors: Merek Siu, Ali Agah, Stanley Hong, Tarun Khurana, Aathavan Karunakaran, Craig Ciesla, Amirali Kia
-
Publication number: 20230260096Abstract: Artificial intelligence driven enhancement of motion blurred sequencing images enables enhanced sequencing that determines a sequence of bases in genetic material with any one or more of: improved performance, improved accuracy, and/or reduced cost. A training set of images taken after unreduced and reduced movement settling times during sequencing is used to train a neural network to enable the neural network to recover enhanced images, as if taken after the unreduced movement settling time, from unenhanced images taken after the reduced movement settling time.Type: ApplicationFiled: February 17, 2023Publication date: August 17, 2023Applicants: Illumina, Inc., Illumina Software, Inc.Inventors: Simon Prince, Stanley Hong, Michael Gallaspy, Merek Siu, Jeffrey Gau, Anindita Dutta, Aathavan Karunakaran, Yina Wang, Rishi Verma
-
Patent number: 11691146Abstract: An apparatus includes a flow cell body, a plurality of electrodes, an integrated circuit, and an imaging assembly. The flow cell body defines one or more flow channels and a plurality of wells. Each flow channel is configured to receive a flow of fluid. Each well is fluidically coupled with the corresponding flow channel. Each well is configured to contain at least one polynucleotide. Each electrode is positioned in a corresponding well of the plurality of wells. The electrodes are operable to effect writing of polynucleotides in the corresponding wells. The integrated circuit is operable to drive selective deposition or activation of selected nucleotides to attach to polynucleotides in the wells to thereby generate polynucleotides representing machine-written data in the wells. The imaging assembly is operable to capture images indicative of one or more nucleotides in a polynucleotide.Type: GrantFiled: August 30, 2022Date of Patent: July 4, 2023Assignee: ILLUMINA, INC.Inventors: Ali Agah, Aathavan Karunakaran, Tarun Khurana, Stanley Hong, Merek Siu, Arvin Emadi, Craig Ciesla
-
Publication number: 20230184725Abstract: An apparatus includes a flow cell body, a plurality of electrodes, an imaging assembly, and one or more barrier features. The flow cell body defines one or more flow channels and a plurality of wells defined as recesses in the floor of each flow channel. Each well is fluidically coupled with the corresponding flow channel. The flow cell body further defines interstitial surfaces between adjacent wells. Each well defines a corresponding depth. Each electrode is positioned in a corresponding well of the plurality of wells. The electrodes are to effect writing of polynucleotides in the wells. The imaging assembly is to capture images of polynucleotides written in the wells. The one or more barrier features are positioned in the wells, between the wells, or above the wells. The one or more barrier features contain reactions in each well, reduce diffusion between the wells, or reduce optical cross-talk between the wells.Type: ApplicationFiled: February 9, 2023Publication date: June 15, 2023Inventors: Tarun Khurana, Ali Agah, Aathavan Karunakaran, Stanley Hong, Merek Siu, Arvin Emadi, Craig Ciesla
-
Publication number: 20230183799Abstract: Systems and methods of identifying nucleobases in a template polynucleotide are disclosed. In one embodiment, such a method may include providing a substrate comprising a plurality of the template polynucleotides in a cluster. The method may further include generating light to stimulate fluorescent emissions from the cluster. The method may further include receiving a first signal emitted at a first intensity from a first plurality of nucleotide analogs hybridized to the plurality of template polynucleotides at a first site. The method may further include receiving a second signal emitted at a second intensity from a second plurality of nucleotide analogs hybridized to the plurality of template polynucleotides at a second site. The method may further include identifying the nucleobases hybridized at the first and second sites of the template polynucleotide based on a combination of the first and second signals.Type: ApplicationFiled: December 8, 2022Publication date: June 15, 2023Inventors: Shaun E. Hunter, Paul Sangiorgio, Aathavan Karunakaran, David Bracher
-
Patent number: 11604175Abstract: An apparatus includes a flow cell body, a plurality of electrodes, an imaging assembly, and one or more barrier features. The flow cell body defines one or more flow channels and a plurality of wells defined as recesses in the floor of each flow channel. Each well is fluidically coupled with the corresponding flow channel. The flow cell body further defines interstitial surfaces between adjacent wells. Each well defines a corresponding depth. Each electrode is positioned in a corresponding well of the plurality of wells. The electrodes are to effect writing of polynucleotides in the wells. The imaging assembly is to capture images of polynucleotides written in the wells. The one or more barrier features are positioned in the wells, between the wells, or above the wells. The one or more barrier features contain reactions in each well, reduce diffusion between the wells, or reduce optical cross-talk between the wells.Type: GrantFiled: June 22, 2022Date of Patent: March 14, 2023Assignee: ILLUMINA, INC.Inventors: Tarun Khurana, Ali Agah, Aathavan Karunakaran, Stanley Hong, Merek Siu, Arvin Emadi, Craig Ciesla
-
Patent number: 11590505Abstract: Devices, systems, and methods for non-volatile storage include a well activation device operable to modify one or more wells from a plurality of wells of a flow cell to provide a set of readable wells. Readable wells are configured to allow exposure of a well to substances from nucleotide sequencing fluids, and prevent exposure to other substances and fluids, such as nucleotide synthesizing fluids. The well activation device may also modify wells to provide a set of writeable wells. This set of wells is configured to allow exposure to the nucleotide synthesizing fluids and substances; and prevent exposure to the nucleotide sequencing fluids and substances. There may also be provisions made for risk mitigation for data errors such as generating commands to write specified data to a nucleotide sequence associated with a particular location in a storage device, reading the nucleotide sequence and performing a comparison.Type: GrantFiled: May 26, 2020Date of Patent: February 28, 2023Assignee: ILLUMINA, INC.Inventors: Merek Siu, Ali Agah, Stanley Hong, Tarun Khurana, Aathavan Karunakaran, Craig Ciesla, Amirali Kia
-
Publication number: 20230023831Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.Type: ApplicationFiled: September 8, 2022Publication date: January 26, 2023Applicant: BERKLEY LIGHTS, INC.Inventors: Kristin G. BEAUMONT, Peter J. BEEMILLER, Volker L.S. KURZ, Gregory G. LAVIEU, Xiaohua WANG, Aathavan KARUNAKARAN
-
Publication number: 20220410154Abstract: An apparatus includes a flow cell body, a plurality of electrodes, an integrated circuit, and an imaging assembly. The flow cell body defines one or more flow channels and a plurality of wells. Each flow channel is configured to receive a flow of fluid. Each well is fluidically coupled with the corresponding flow channel. Each well is configured to contain at least one polynucleotide. Each electrode is positioned in a corresponding well of the plurality of wells. The electrodes are operable to effect writing of polynucleotides in the corresponding wells. The integrated circuit is operable to drive selective deposition or activation of selected nucleotides to attach to polynucleotides in the wells to thereby generate polynucleotides representing machine-written data in the wells. The imaging assembly is operable to capture images indicative of one or more nucleotides in a polynucleotide.Type: ApplicationFiled: August 30, 2022Publication date: December 29, 2022Inventors: Ali Agah, Aathavan Karunakaran, Tarun Khurana, Stanley Hong, Merek Siu, Arvin Emadi, Craig Ciesla
-
Publication number: 20220356429Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.Type: ApplicationFiled: May 12, 2022Publication date: November 10, 2022Inventors: Randall D. LOWE, JR., Kristin G. BEAUMONT, Aathavan KARUNAKARAN, Natalie C. MARKS, Jason M. MCEWEN, Mark P. WHITE, J. Tanner NEVILL, Gang F. WANG, Andrew W. MCFARLAND, Daniele Malleo, Keith J. BREINLINGER, Xiao GUAN, Kevin T. CHAPMAN
-
Publication number: 20220317100Abstract: An apparatus includes a flow cell body, a plurality of electrodes, an imaging assembly, and one or more barrier features. The flow cell body defines one or more flow channels and a plurality of wells defined as recesses in the floor of each flow channel. Each well is fluidically coupled with the corresponding flow channel. The flow cell body further defines interstitial surfaces between adjacent wells. Each well defines a corresponding depth. Each electrode is positioned in a corresponding well of the plurality of wells. The electrodes are to effect writing of polynucleotides in the wells. The imaging assembly is to capture images of polynucleotides written in the wells. The one or more barrier features are positioned in the wells, between the wells, or above the wells. The one or more barrier features contain reactions in each well, reduce diffusion between the wells, or reduce optical cross-talk between the wells.Type: ApplicationFiled: June 22, 2022Publication date: October 6, 2022Inventors: Tarun Khurana, Ali Agah, Aathavan Karunakaran, Stanley Hong, Merek Siu, Arvin Emadi, Craig Ciesla
-
Patent number: 11453003Abstract: An apparatus includes a flow cell body, a plurality of electrodes, an integrated circuit, and an imaging assembly. The flow cell body defines one or more flow channels and a plurality of wells. Each flow channel is configured to receive a flow of fluid. Each well is fluidically coupled with the corresponding flow channel. Each well is configured to contain at least one polynucleotide. Each electrode is positioned in a corresponding well of the plurality of wells. The electrodes are operable to effect writing of polynucleotides in the corresponding wells. The integrated circuit is operable to drive selective deposition or activation of selected nucleotides to attach to polynucleotides in the wells to thereby generate polynucleotides representing machine-written data in the wells. The imaging assembly is operable to capture images indicative of one or more nucleotides in a polynucleotide.Type: GrantFiled: December 14, 2021Date of Patent: September 27, 2022Assignee: ILLUMINA, INC.Inventors: Ali Agah, Aathavan Karunakaran, Tarun Khurana, Stanley Hong, Merek Siu, Arvin Emadi, Craig Ciesla
-
Patent number: 11454629Abstract: In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.Type: GrantFiled: June 22, 2020Date of Patent: September 27, 2022Assignee: Berkeley Lights, Inc.Inventors: Kristin G. Beaumont, Peter J. Beemiller, Volker L. S. Kurz, Gregory G. Lavieu, Xiaohua Wang, Aathavan Karunakaran
-
Publication number: 20220254452Abstract: A system writes input data to a storage device as machine-written polynucleotides; and reads machine written polynucleotides from the storage device as output data. The storage device includes a flow cell including a plurality of storage wells in which machine written polynucleotides may be stored. The storage device may include a set of electrodes corresponding to the storage wells that allow for selective interactions with wells across the surface of a flow cell. Operation of the storage device may include receiving a read request associated with a particular location in the storage device, creating a copy of a nucleotide sequence located at the particular location in the storage device, transferring the copy of the nucleotide sequence to a read location, and reading the copy of the nucleotide sequence at the read location.Type: ApplicationFiled: March 1, 2022Publication date: August 11, 2022Inventors: Craig Ciesla, Ali Agah, Stanley Hong, Tarun Khurana, Aathavan Karunakaran, Arvin Emadi, Merek Siu