Patents by Inventor Abhijeet Misra

Abhijeet Misra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180016667
    Abstract: The disclosure provides aluminum alloys having varying ranges of alloying elements and properties.
    Type: Application
    Filed: January 13, 2017
    Publication date: January 18, 2018
    Inventors: Abhijeet Misra, James A. Wright, Herng-Jeng Jou
  • Patent number: 9845520
    Abstract: A beryllium-free high-strength copper alloy includes, about 10-30 vol % of L12-(Ni,Cu)3(Al,Sn), and substantially excludes cellular discontinuous precipitation around grain boundaries. The alloy may include at least one component selected from the group consisting of: Ag, Cr, Mn, Nb, Ti, and V, and the balance Cu.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 19, 2017
    Assignee: Questek Innovations LLC
    Inventors: James A. Wright, Abhijeet Misra
  • Patent number: 9627749
    Abstract: A patch for a device in an electronic housing including an aluminum layer having a threshold thickness, a non-conductive layer on a first side of the aluminum layer, and a radio-frequency (RF) transparent layer on a second side of the aluminum layer is provided. A method for manufacturing an antenna window including a patch as above is also provided, the method including determining a thickness of the aluminum layer adjacent to an anodized aluminum layer. A method for manufacturing an antenna window including coating an aluminum layer having a threshold thickness on a radio-frequency (RF) transparent layer to form an RF transparent laminate is also provided. A method for manufacturing an antenna window including removing a thickness of aluminum is also provided. A method for manufacturing an antenna window including disposing a mask on an aluminum substrate and anodizing the aluminum substrate to a selected thickness is also provided.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: April 18, 2017
    Assignee: APPLE INC.
    Inventors: Abhijeet Misra, Brian S. Tryon, Charles J. Kuehmann, Stephen B. Lynch, James A. Wright
  • Publication number: 20170088917
    Abstract: Micro additions of certain elements such as zirconium or titanium are added to high strength aluminum alloys to counter discoloring effects of other micro-alloying elements when the high strength alloys are anodized. The other micro-alloying elements are added to increase the adhesion of an anodic film to the aluminum alloy substrate. However, these micro-alloying elements can also cause slight discoloration, such as a yellowing, of the anodic film. Such micro-alloying elements that can cause discoloration can include copper, manganese, iron and silver. The micro additions of additional elements, such as one or more of zirconium, tantalum, molybdenum, hafnium, tungsten, vanadium, niobium and tantalum, can dilute the discoloration of the micro-alloying elements. The resulting anodic films are substantially colorless.
    Type: Application
    Filed: October 29, 2015
    Publication date: March 30, 2017
    Inventors: James A. Curran, William A. Counts, Abhijeet Misra
  • Publication number: 20170044646
    Abstract: Alloys, processes for preparing the alloys, and articles including the alloys are provided. The alloys can include, by weight, about 0.01% to about 1% vanadium, 0% to about 0.04% carbon, 0% to about 8% niobium, 0% to about 1% titanium, 0% to about 0.04% boron, 0% to about 1% tungsten, 0% to about 1% tantalum, 0% to about 1% hafnium, and 0% to about 1% ruthenium, the balance essentially molybdenum and incidental elements and impurities.
    Type: Application
    Filed: April 14, 2015
    Publication date: February 16, 2017
    Inventors: Jiadong Gong, David R. Snyder, Jason T. Sebastian, William Arthur Counts, Abhijeet Misra, James A. Wright
  • Publication number: 20160222490
    Abstract: An alloy includes, in weight percentage, about 20.0% to about 25.0% chromium, 0% to about 5.0% molybdenum, about 3.0% to about 15.0% cobalt, about 1.5% to about 6.0% niobium, about 1.0% to about 3.0% tantalum, about 1.0% to about 5.0% tungsten, 0% to about 1.0% aluminum, 0% to about 0.05% carbon, 0% to about 0.01% titanium, and the balance nickel and incidental elements and impurities, wherein the alloy includes L12 and D022 precipitates in a compact morphology.
    Type: Application
    Filed: November 20, 2014
    Publication date: August 4, 2016
    Inventors: James A. Wright, Weiming Huang, Abhijeet Misra, Jeremy Hoishun Li
  • Publication number: 20160204502
    Abstract: A patch for a device in an electronic housing including an aluminum layer having a threshold thickness, a non-conductive layer on a first side of the aluminum layer, and a radio-frequency (RF) transparent layer on a second side of the aluminum layer is provided. A method for manufacturing an antenna window including a patch as above is also provided, the method including determining a thickness of the aluminum layer adjacent to an anodized aluminum layer. A method for manufacturing an antenna window including coating an aluminum layer having a threshold thickness on a radio-frequency (RF) transparent layer to form an RF transparent laminate is also provided. A method for manufacturing an antenna window including removing a thickness of aluminum is also provided. A method for manufacturing an antenna window including disposing a mask on an aluminum substrate and anodizing the aluminum substrate to a selected thickness is also provided.
    Type: Application
    Filed: March 23, 2016
    Publication date: July 14, 2016
    Inventors: Abhijeet MISRA, Brian S. TRYON, Charles J. KUEHMANN, Stephen B. LYNCH, James A. WRIGHT
  • Patent number: 9300036
    Abstract: A patch for a device in an electronic housing including an aluminum layer having a threshold thickness, a non-conductive layer on a first side of the aluminum layer, and a radio-frequency (RF) transparent layer on a second side of the aluminum layer is provided. A method for manufacturing an antenna window including a patch as above is also provided, the method including determining a thickness of the aluminum layer adjacent to an anodized aluminum layer. A method for manufacturing an antenna window including coating an aluminum layer having a threshold thickness on a radio-frequency (RF) transparent layer to form an RF transparent laminate is also provided. A method for manufacturing an antenna window including removing a thickness of aluminum is also provided. A method for manufacturing an antenna window including disposing a mask on an aluminum substrate and anodizing the aluminum substrate to a selected thickness is also provided.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: March 29, 2016
    Assignee: Apple Inc.
    Inventors: Abhijeet Misra, Brian S. Tryon, Charles J. Kuehmann, Stephen B. Lynch, James A. Wright
  • Publication number: 20150368772
    Abstract: The disclosure provides an aluminum alloy comprising second phase particles having an Al(FeMn)Si phase with an (Fe+Mn):Si ratio of 0.5 to 2.5 and a mean particle diameter of 0.5 ?m to 10 ?m. The disclosure also provides an aluminum alloy comprising 0.02 to 0.11 wt % Fe, 0 to 0.16 wt % Mn, 0 to 0.08 wt. % Cr, 0.40 to 0.90 wt % Mg, and 0.20 to 0.60 wt % Si, wherein the aluminum alloy is homogenized at a temperature from 550 to 590° C.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 24, 2015
    Inventors: Herng-Jeng Jou, Abhijeet Misra
  • Publication number: 20140361945
    Abstract: A patch for a device in an electronic housing including an aluminum layer having a threshold thickness, a non-conductive layer on a first side of the aluminum layer, and a radio-frequency (RF) transparent layer on a second side of the aluminum layer is provided. A method for manufacturing an antenna window including a patch as above is also provided, the method including determining a thickness of the aluminum layer adjacent to an anodized aluminum layer. A method for manufacturing an antenna window including coating an aluminum layer having a threshold thickness on a radio-frequency (RF) transparent layer to form an RF transparent laminate is also provided. A method for manufacturing an antenna window including removing a thickness of aluminum is also provided. A method for manufacturing an antenna window including disposing a mask on an aluminum substrate and anodizing the aluminum substrate to a selected thickness is also provided.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Inventors: Abhijeet MISRA, Brian S. TRYON, Charles J. KUEHMANN, Stephen B. LYNCH, James A. WRIGHT
  • Patent number: 8518192
    Abstract: A lead-free copper alloy includes, in combination by weight, about 10.0% to about 20.0% bismuth, about 0.05% to about 0.3% phosphorous, about 2.2% to about 10.0% tin, up to about 5.0% antimony, and up to about 0.02% boron, the balance essentially copper and incidental elements and impurities. The alloy contains no more than about 0.05 wt. % or 0.10 wt. % lead.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: August 27, 2013
    Assignee: QuesTek Innovations, LLC
    Inventors: Abhijeet Misra, Jason Sebastian, James A. Wright
  • Publication number: 20120291926
    Abstract: The disclosure relates to an alloy comprising, by weight, about 5.8% to about 6.8% zinc, about 2.5% to about 3.0% magnesium, about 1.5% to about 2.3% copper, 0% to about 0.2% scandium, 0% to about 0.2% zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities. In embodiments, the alloy has a stress-corrosion cracking threshold stress of at least about 240 MPa using an ASTM G47 short-transverse test specimen and a yield strength of at least about 510 MPa using an ASTM E8 longitudinal test specimen.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 22, 2012
    Inventors: Abhijeet Misra, James A. Wright
  • Publication number: 20110303387
    Abstract: A lead-free copper alloy includes, in combination by weight, about 10.0% to about 20.0% bismuth, about 0.05% to about 0.3% phosphorous, about 2.2% to about 10.0% tin, up to about 5.0% antimony, and up to about 0.02% boron, the balance essentially copper and incidental elements and impurities. The alloy contains no more than about 0.05 wt. % or 0.10 wt. % lead.
    Type: Application
    Filed: March 2, 2010
    Publication date: December 15, 2011
    Applicant: QUESTEK INNOVATIONS LLC.
    Inventors: Abhijeet Misra, Jason Sebastian, James A. Wright
  • Publication number: 20110044843
    Abstract: An aluminum casting alloy resistant to hot tearing includes, in wt %, about 4.0 to about 6.9 Zn, about 2.0 to about 3.5 Mg, about 0.6 to about 1.2 Cu, about 0.38 to about 0.57 Sc, about 0.18 to about 0.28 Zr, and the balance Al and impurities, substantially excluding Fe, Mn, and Si, said alloy characterized by a freezing range of less than about 150° C., solidus temperature above about 490° C., and eutectic phase fraction above about 5% at the late stages of solidification. The alloy is processed to form a dispersion of L12 particles inoculating fcc grains with a grain diameter of about 40 to about 60 ?m, and ??-phase precipitates enabling an ambient yield strength from about 410 MPa to about 540 MPa.
    Type: Application
    Filed: January 16, 2009
    Publication date: February 24, 2011
    Applicant: QUESTEK INNOVATIONS LLC
    Inventors: Abhijeet Misra, Charles Kuehmann, Herng-jeng Jou
  • Publication number: 20100243112
    Abstract: A beryllium-free high-strength copper alloy includes, about 10-30 vol % of L12-(Ni,Cu)3(Al,Sn), and substantially excludes cellular discontinuous precipitation around grain boundaries. The alloy may include at least one component selected from the group consisting of: Ag, Cr, Mn, Nb, Ti, and V, and the balance Cu.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Applicant: QuesTek Innovations LLC
    Inventors: James A. Wright, Abhijeet Misra
  • Publication number: 20060172142
    Abstract: Oxidation resistant niobium based alloys have a composition to provide a stable ternary phase such as PtYAl or PdYAl, which supplies yttrium and aluminum to the system and forms a protective oxide such as Yttria-Aluminum-Garnet (YAG) scale at elevated temperature. These niobium based alloys further achieve an optimal combination of oxidation resistance and creep strength through a fine dispersion of a coherent second phase. The alloys, withstanding higher combustion temperatures, are useful for extreme-environment propulsion and power applications, including hot sections of gas turbine engines, aerospace turbine blades, and chemical and petroleum plants, where higher turbine efficiency and reduction of operating costs, by-products emissions, and global fuel reserves consumption are desired.
    Type: Application
    Filed: July 28, 2005
    Publication date: August 3, 2006
    Inventors: Gregory Olson, David Bryan, Abhijeet Misra