Patents by Inventor Abhishek Dube

Abhishek Dube has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141498
    Abstract: The present disclosure relates to methods of correlating zones of processing chambers, and related systems and methods. In one implementation, a method of correlating zones of a processing chamber includes partitioning the processing volume into a plurality of zones along a first direction of the processing volume and a second direction of the processing volume. The second direction intersects the first direction. The plurality of zones have a first zone number (m), and a second zone number (n). The method includes determining a group number. The determining of the group number includes multiplying a first value by a second value. The first value correlates to a first zone number (m) of a plurality of zones and the second value correlates to a second zone number (n) of the plurality of zones. The method includes grouping the zones into groups having a number that is equal to the group number.
    Type: Application
    Filed: December 20, 2022
    Publication date: May 2, 2024
    Inventors: Zuoming ZHU, Ala MORADIAN, Shu-Kwan LAU, Manjunath SUBBANNA, Errol Antonio C. SANCHEZ, Abhishek DUBE, Erika R. WARRICK, Martin Jeffrey SALINAS, Chandra MOHAPATRA
  • Publication number: 20240145240
    Abstract: Methods for selectively depositing an epitaxial layer are provided. In some implementations, the selective epitaxial deposition process includes providing the co-flow of chlorosilane precursors with at least one of an antimony-containing precursor and a phosphorous-containing precursor. The method utilizes co-flowing of multiple chlorosilane precursors to enable combination of silicon and at least one of phosphorous and antimony in the same matrix using a low-temperature selective process. The deposited epitaxial layer using the epitaxial deposition techniques described not only contains phosphorous and/or antimony but also has a high activated phosphorous and/or antimony concentration.
    Type: Application
    Filed: October 18, 2023
    Publication date: May 2, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Chen-Ying WU, Abhishek DUBE
  • Publication number: 20240145550
    Abstract: A semiconductor structure includes a stack of alternating doped semiconductor epitaxial layers and cap epitaxial layers formed on a substrate. Each doped semiconductor epitaxial layer includes silicon having carrier dopants, and each cap epitaxial layer includes silicon and carbon un-doped with carrier dopants.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Inventors: Jason JEWELL, Abhishek DUBE
  • Publication number: 20240134613
    Abstract: In some implementations, a device may obtain, based on a characteristic associated with an account, a set of forecasted values from a dataset of forecasted values. The set of forecasted values may include forecasted values for a plurality of forecasting metrics for a plurality of time periods. The device may generate, for the account, feature metric values, for the plurality of time periods, for a plurality of feature metrics based on the set of forecasted values. The device may compute, for the account, at least one present or future value metric based on the feature metric values for the plurality of feature metrics.
    Type: Application
    Filed: October 24, 2022
    Publication date: April 25, 2024
    Inventor: Abhishek DUBE
  • Patent number: 11948796
    Abstract: One or more embodiments described herein relate to selective methods for fabricating devices and structures. In these embodiments, the devices are exposed inside the process volume of a process chamber. Precursor gases are flowed in the process volume at certain flow ratios and at certain process conditions. The process conditions described herein result in selective epitaxial layer growth on the {100} planes of the crystal planes of the devices, which corresponds to the top of each of the fins. Additionally, the process conditions result in selective etching of the {110} plane of the crystal planes, which corresponds to the sidewalls of each of the fins. As such, the methods described herein provide a way to grow or etch epitaxial films at different crystal planes. Furthermore, the methods described herein allow for simultaneous epitaxial film growth and etch to occur on the different crystal planes.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: April 2, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yi-Chiau Huang, Chen-Ying Wu, Abhishek Dube, Chia Cheng Chin, Saurabh Chopra
  • Publication number: 20240038531
    Abstract: A method and apparatus for forming strain relaxed buffers that may be used in semiconductor devices incorporating superlattice structures are provided. The method includes epitaxially depositing a first silicon germanium layer over the substrate. The first silicon germanium layer has a first surface that contacts a frontside surface of the substrate and a second surface opposite the first surface. The first silicon germanium layer has a first thickness and a germanium concentration gradient that increases from the first surface to the second surface. The method further includes epitaxially depositing a silicon germanium capping layer on the first silicon germanium layer. The silicon germanium capping layer has a second thickness and a substantially uniform germanium concentration that is equal to, substantially equal to, or greater than a maximum germanium concentration of the germanium concentration gradient.
    Type: Application
    Filed: January 18, 2023
    Publication date: February 1, 2024
    Inventors: Thomas KIRSCHENHEITER, John TOLLE, Abhishek DUBE, Maribel MALDONADO-GARCIA
  • Publication number: 20240018688
    Abstract: The present disclosure relates to batch processing apparatus, systems, and related methods and structures for epitaxial deposition operations. In one implementation, an apparatus for substrate processing includes a chamber body. The chamber body includes a processing volume, a plurality of gas inject passages, and an exhaust port. The apparatus includes one or more upper heat sources positioned above the processing volume, one or more lower heat sources positioned below the processing volume, and a pedestal assembly positioned in the processing volume. The apparatus includes one or more side heat sources positioned outwardly of the processing volume and configured to heat the processing volume through a side of the processing volume. The chamber body can be a dual-chamber body that includes a second processing volume, and the one or more side heat sources can be positioned outwardly of one or more of the processing volume or the second processing volume.
    Type: Application
    Filed: December 2, 2022
    Publication date: January 18, 2024
    Inventors: Errol Antonio C. SANCHEZ, Shu-Kwan LAU, Zuoming ZHU, Saurabh CHOPRA, Abhishek DUBE, Chandra MOHAPATRA, Alexandros ANASTASOPOULOS, Martin Jeffrey SALINAS
  • Publication number: 20230420521
    Abstract: Silicon germanium (SiGe)/silicon containing superlattice structure and methods for forming the same are provided. Various embodiments utilize SiGe layers in a SiGe/Si superlattice structure, which include varying concentrations of germanium throughout the layer to achieve reduced dislocations or a dislocation-free superlattice. For example, in some embodiments, for each SiGe layer there is a core SiGe film with a low Ge content and two thinner SiGe layers or cladding layers positioned on opposing sides of the core SiGe film with each of the SiGe cladding layers having a higher Ge content then the core SiGe film. Various embodiments provide for SiGe layers having a germanium depth profile enabling strained SiGe superlattice deposition on Si{110} substrates.
    Type: Application
    Filed: January 17, 2023
    Publication date: December 28, 2023
    Inventors: Yi-Chiau HUANG, Pierre TOMASINI, Abhishek Dube
  • Patent number: 11843033
    Abstract: A method for the selective formation of epitaxial layers is described herein. In the method, epitaxial layers are deposited to form source and drain regions around a horizontal gate all around (hGAA structure). The method includes co-flowing a combination of chlorinated silicon containing precursors, antimony containing precursors, and n-type dopant precursors. The resulting source and drain regions are selectively grown from crystalline nanosheets or nanowires of the hGAA structure over the non-crystalline gate structure and dielectric layers. The source and drain regions are predominantly grown in a <110> direction.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: December 12, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Chen-Ying Wu, Abhishek Dube, Yi-Chiau Huang
  • Publication number: 20230243068
    Abstract: Embodiments generally relate to methods for depositing silicon-phosphorous materials, and more specifically, relate to using silicon-phosphorous compounds in vapor deposition processes (e.g., epitaxy, CVD, or ALD) to deposit silicon-phosphorous materials. In one or more embodiments, a method for forming a silicon-phosphorous material on a substrate is provided and includes exposing the substrate to a deposition gas containing one or more silicon-phosphorous compounds during a deposition process and depositing a film containing the silicon-phosphorous material on the substrate. The silicon-phosphorous compound has the chemical formula [(R3-vHvSi)—(R2-wHwSi)n]xPHyR?z, where each instance of R and each instance of R? are independently an alkyl or a halogen, n is 0, 1, or 2; v is 0, 1, 2, or 3; w is 0, 1, or 2; x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2, and where x+y+z=3.
    Type: Application
    Filed: April 5, 2023
    Publication date: August 3, 2023
    Inventors: Errol Antonio C. SANCHEZ, Mark J. SALY, Schubert CHU, Abhishek DUBE, Srividya NATARAJAN
  • Patent number: 11649560
    Abstract: Embodiments generally relate to methods for depositing silicon-phosphorous materials, and more specifically, relate to using silicon-phosphorous compounds in vapor deposition processes (e.g., epitaxy, CVD, or ALD) to deposit silicon-phosphorous materials. In one or more embodiments, a method for forming a silicon-phosphorous material on a substrate is provided and includes exposing the substrate to a deposition gas containing one or more silicon-phosphorous compounds during a deposition process and depositing a film containing the silicon-phosphorous material on the substrate. The silicon-phosphorous compound has the chemical formula [(R3-vHvSi)—(R2-wHwSi)n]xPHyR?z, where each instance of R and each instance of R? are independently an alkyl or a halogen, n is 0, 1, or 2; v is 0, 1, 2, or 3; w is 0, 1, or 2; x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2, and where x+y+z=3.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: May 16, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Errol Antonio C Sanchez, Mark J. Saly, Schubert Chu, Abhishek Dube, Srividya Natarajan
  • Publication number: 20230036426
    Abstract: Embodiments of the present disclosure generally relate to methods for forming epitaxial layers on a semiconductor device. In one or more embodiments, methods include removing oxides from a substrate surface during a cleaning process, flowing a processing reagent containing a silicon source and exposing the substrate to the processing reagent during an epitaxy process, and stopping the flow of the processing reagent. The method also includes flowing a purging gas and pumping residues from the processing system, stopping the flow of the purge gas, flowing an etching gas and exposing the substrate to the etching gas. The etching gas contains hydrogen chloride and at least one germanium and/or chlorine compound. The method further includes stopping the flow of the at least one compound while continuing the flow of the hydrogen chloride and exposing the substrate to the hydrogen chloride and stopping the flow of the hydrogen chloride.
    Type: Application
    Filed: October 6, 2022
    Publication date: February 2, 2023
    Inventors: Abhishek DUBE, Xuebin LI, Hua CHUNG, Flora Fong-Song CHANG
  • Publication number: 20220397706
    Abstract: Apparatus for heating a substrate within a substrate processing chamber are described herein. More specifically, possible lamp modules for use within a substrate processing chamber are described. The lamp modules include a reflector body. The reflector body is a reflective material. The reflector body includes grooves disposed in a surface and configured to direct radiant energy towards a substrate. Each ring includes multiple grooves with different cross sections to allow radiant energy to be directed at different radial positions on the substrate from the same ring. The grooves may be either curved or linear grooves.
    Type: Application
    Filed: April 20, 2022
    Publication date: December 15, 2022
    Inventors: Shu-Kwan LAU, Enle CHOO, Danny Don WANG, Shainish NELLIKKA, Toshiyuki NAKAGAWA, Zhiyuan YE, Abhishek DUBE
  • Publication number: 20220319844
    Abstract: Generally, examples described herein relate to methods and semiconductor processing systems for anisotropically epitaxially growing a material on a silicon germanium (SiGe) surface. In an example, a surface of silicon germanium is formed on a substrate. Epitaxial silicon germanium is epitaxially grown on the surface of silicon germanium. A first growth rate of the epitaxial silicon germanium is in a first direction perpendicular to the surface of silicon germanium, and a second growth rate of the epitaxial silicon germanium is in a second direction perpendicular to the first direction. The first growth rate is at least 5 times greater than the second growth rate.
    Type: Application
    Filed: May 7, 2020
    Publication date: October 6, 2022
    Inventors: Chia Cheng CHIN, Abhishek DUBE, Yi-Chiau HUANG, Saurabh CHOPRA
  • Publication number: 20220322492
    Abstract: A process chamber includes a chamber body having a ceiling disposed above a floor with a chassis and an injector ring disposed therebetween. Upper and lower clamp rings secure the upper and floors, respectively, in place. An upper heating module is coupled to the upper clamp ring above the ceiling. A lower heating module is coupled to the lower clamp ring below the floor.
    Type: Application
    Filed: April 6, 2021
    Publication date: October 6, 2022
    Inventors: Shu-Kwan LAU, Brian Hayes BURROWS, Zhiyuan YE, Richard O. COLLINS, Enle CHOO, Danny D. WANG, Shainish NELLIKKA, Toshiyuki NAKAGAWA, Abhishek DUBE, Ala MORADIAN, Kartik Bhupendra SHAH
  • Publication number: 20220310390
    Abstract: One or more embodiments described herein relate to selective methods for fabricating devices and structures. In these embodiments, the devices are exposed inside the process volume of a process chamber. Precursor gases are flowed in the process volume at certain flow ratios and at certain process conditions. The process conditions described herein result in selective epitaxial layer growth on the {100} planes of the crystal planes of the devices, which corresponds to the top of each of the fins. Additionally, the process conditions result in selective etching of the {110} plane of the crystal planes, which corresponds to the sidewalls of each of the fins. As such, the methods described herein provide a way to grow or etch epitaxial films at different crystal planes. Furthermore, the methods described herein allow for simultaneous epitaxial film growth and etch to occur on the different crystal planes.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 29, 2022
    Inventors: Yi-Chiau HUANG, Chen-Ying WU, Abhishek DUBE, Chia Cheng CHIN, Saurabh CHOPRA
  • Patent number: 11456178
    Abstract: Processing methods may be performed to produce semiconductor structures. The methods may include forming a silicon layer over a semiconductor substrate. The forming may include forming a silicon layer incorporating a dopant. The methods may include oxidizing a portion of the silicon layer while maintaining a portion of the silicon layer in contact with the semiconductor substrate. The oxidizing may drive a portion of the dopant through the silicon layer and into the semiconductor substrate.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: September 27, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. H. Hung, Benjamin Colombeau, Abhishek Dube, Sheng-Chin Kung, Patricia M. Liu, Malcolm J. Bevan, Johanes F. Swenberg
  • Publication number: 20220238650
    Abstract: A method for the selective formation of epitaxial layers is described herein. In the method, epitaxial layers are deposited to form source and drain regions around a horizontal gate all around (hGAA structure). The method includes co-flowing a combination of chlorinated silicon containing precursors, antimony containing precursors, and n-type dopant precursors. The resulting source and drain regions are selectively grown from crystalline nanosheets or nanowires of the hGAA structure over the non-crystalline gate structure and dielectric layers. The source and drain regions are predominantly grown in a <110> direction.
    Type: Application
    Filed: April 15, 2021
    Publication date: July 28, 2022
    Inventors: Chen-Ying WU, Abhishek DUBE, Yi-Chiau HUANG
  • Publication number: 20220199804
    Abstract: A finFET device includes a doped source and/or drain extension that is disposed between a gate spacer of the finFET and a bulk semiconductor portion of the semiconductor substrate on which the n-doped or p-doped source or drain extension is disposed. The doped source or drain extension is formed by a selective epitaxial growth (SEG) process in a cavity formed proximate the gate spacer. After formation of the cavity, advanced processing controls (APC) (i.e., integrated metrology) is used to determine the distance of recess, without exposing the substrate to an oxidizing environment. The isotropic etch process, the metrology, and selective epitaxial growth may be performed in the same platform.
    Type: Application
    Filed: March 9, 2022
    Publication date: June 23, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Benjamin Colombeau, Tushar Mandrekar, Patricia M. Liu, Suketu Arun Parikh, Matthias Bauer, Dimitri R. Kioussis, Sanjay Natarajan, Abhishek Dube
  • Patent number: 11309404
    Abstract: A finFET device includes a doped source and/or drain extension that is disposed between a gate spacer of the finFET and a bulk semiconductor portion of the semiconductor substrate on which the n-doped or p-doped source or drain extension is disposed. The doped source or drain extension is formed by a selective epitaxial growth (SEG) process in a cavity formed proximate the gate spacer. After formation of the cavity, advanced processing controls (APC) (i.e., integrated metrology) is used to determine the distance of recess, without exposing the substrate to an oxidizing environment. The isotropic etch process, the metrology, and selective epitaxial growth may be performed in the same platform.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: April 19, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Benjamin Colombeau, Tushar Mandrekar, Patricia M. Liu, Suketu Arun Parikh, Matthias Bauer, Dimitri R. Kioussis, Sanjay Natarajan, Abhishek Dube